Line 1: Line 1:
<br>  
+
''<br>''
  
 
== '''Inverse of a Matrix'''  ==
 
== '''Inverse of a Matrix'''  ==
Line 19: Line 19:
 
*Ax=0 has a unique solution  
 
*Ax=0 has a unique solution  
 
*There is a B matrix such that A B = In  
 
*There is a B matrix such that A B = In  
*Ax=b has a unique solution for any b---x=A^-1 b
+
*Ax=b has a unique solution for any b---x=<span class="texhtml">''A''<sup> − 1</sup></span>
  
<br>  
+
<br> <br>  
  
 
== Properties  ==
 
== Properties  ==
  
*(AB)^-1 = B<span class="texhtml"><sup> − </sup>1</span>
+
*<span class="texhtml">(AB)<sup> − 1</sup></span>&nbsp;=&nbsp;<span class="texhtml">''B''<sup> − 1</sup>''A''<sup> − 1</sup></span>
 +
*(A1 A2.....Ar)<span class="texhtml"><sup> − 1</sup></span>=<span class="texhtml">''A''r'''''<b><sup> − 1</sup></b>'''''A''''''''r'' − 1<sup> − 1</sup>...''A''1<sup> − 1</sup></span>
 +
*<span class="texhtml">(''A''<sup> − 1</sup>)<sup> − 1</sup> = ''A''</span><span class="texhtml"><sup></sup></span>
 +
*<span class="texhtml">(''A''<sup> − 1</sup>)<sup>''T''</sup> = (''A''<sup>''T''</sup>)<sup> − 1</sup></span>
 +
 
 +
 
  
<br> <br> <br> <br> <math>\left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right)</math>
+
Calculations<br> <br> <br> <br> <math>\left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right)</math>

Revision as of 13:02, 13 December 2011


Inverse of a Matrix


Definition: Let A be a square matrix of order n x n(square matrix). If there exists a matrix B such that

A B = I n = B A

Then B is called the inverse matrix of A.


Conditions

A n x n is invertible (non-singular) if: 
  • Ax=0 has a unique solution
  • There is a B matrix such that A B = In
  • Ax=b has a unique solution for any b---x=A − 1



Properties

  • (AB) − 1 = B − 1A − 1
  • (A1 A2.....Ar) − 1=Ar − 1A'''r − 1 − 1...A1 − 1
  • (A − 1) − 1 = A
  • (A − 1)T = (AT) − 1


Calculations



$ \left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood