Line 1: Line 1:
== Determinants  ==
+
=== Determinants  ===
  
 If A is a square matrix then the '''determinant function''' is denoted by '''det '''and '''det(A)'''  
+
----
 +
 
 +
----
 +
 
 +
 
 +
''<u>'''Introduction:'''</u>''<u></u''<u</u>'''''<u></u>'''
 +
 
 +
<br>
 +
 
 +
If A is a square matrix then the '''determinant function''' is denoted by '''det '''and '''det(A)'''  
  
 
For an instance we have a 2 x 2 matrix denominated A, therefore:  
 
For an instance we have a 2 x 2 matrix denominated A, therefore:  
Line 17: Line 26:
 
<br>  
 
<br>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>det(A)=\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right)</math>&nbsp;
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>det(A)=\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right)</math>&nbsp;  
  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= ('''a<sub>11</sub> * a<sub>22)</sub> - (a<sub>12</sub> * a'''<sub>'''21'''</sub><sub>'''&nbsp;'''</sub>) &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= ('''a<sub>11</sub> * a<sub>22)</sub> - (a<sub>12</sub> * a'''<sub>'''21'''</sub><sub>'''&nbsp;'''</sub>) &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
Line 27: Line 36:
 
<br>  
 
<br>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>det(A)=\left(\begin{array}{cccc}a11&a12&a13\\a21&a22&a23\\a31&a32&a33\end{array}\right)</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>det(A)=\left(\begin{array}{cccc}a11&a12&a13\\a21&a22&a23\\a31&a32&a33\end{array}\right)</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= '''(a<sub>11</sub> * a<sub>22</sub> * a<sub>33</sub>) + (a<sub>12</sub> * a<sub>23</sub> * a<sub>31</sub>) + (a<sub>13</sub> * a<sub>21</sub> * a<sub>32</sub>) - (a<sub>12</sub> * a<sub>21</sub> * a<sub>33</sub>) - (a<sub>11</sub> * a<sub>23</sub> * a<sub>32</sub>) - (a<sub>13</sub> * a<sub>22</sub> * a<sub>31</sub>)&nbsp;'''
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= '''(a<sub>11</sub> * a<sub>22</sub> * a<sub>33</sub>) + (a<sub>12</sub> * a<sub>23</sub> * a<sub>31</sub>) + (a<sub>13</sub> * a<sub>21</sub> * a<sub>32</sub>) - (a<sub>12</sub> * a<sub>21</sub> * a<sub>33</sub>) - (a<sub>11</sub> * a<sub>23</sub> * a<sub>32</sub>) - (a<sub>13</sub> * a<sub>22</sub> * a<sub>31</sub>)&nbsp;'''  
  
 
----
 
----
==Properties of Determinants==
 
  
 +
----
 +
 +
<u>'''''Properties of Determinants:'''''</u>
 +
 +
 +
 +
<u>Theorem 1</u>: Let A be an n x n matrix then; '''det(A) = det(A<sup>t</sup>)
 +
<u></u><u></<u></u><u><u></u><u></u<u></u<u></u><strike></strike><sub></sub><sub></sub><u>Theorem 2:</u> If a matrix B results from matrix A by interchanging two different rows (columns) of A, then; '''det(B) = - det(A)&nbsp;'''
  
 +
<u>Theorem 3:</u> If two rows (columns) of A are equal, then; '''det(A) = 0'''
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;  
+
<u>Theorem 4: </u>If a row (column) of A consists entirely of zeros, then; '''det(A) = 0'''
  
<br>
+
<u>Theorem 5:</u> If B obtained from A by multiplying a row (column) of A by a real number k, then;'''det(B) = ''k''det(A) &nbsp; &nbsp; &nbsp;'''
 +
<u>Theorem 6:</u> If B = [b<sub>ij</sub>] is obained from A = [a<sub>ij</sub>] by adding to each element of the ''r''th row (column) of A, ''k'' times the corresponding element of the ''s''th row (column), ''r'' not equal ''s'', of A, then; '''det(B) = det(A)'''
 +
<u></u<u>Theorem 7:</u> If a matrix A = [a<sub>ij</sub>] is upper (lower) triangular, then; det(A) = a<sub>11</sub>*a<sub>12</sub>...a<sub>nn </sub>; tha is, the determinant of a triangular matrix is the product of the element on themain diagonal. &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<br>

Revision as of 16:23, 7 December 2011

Determinants




Introduction:</u<u


If A is a square matrix then the determinant function is denoted by det and det(A)

For an instance we have a 2 x 2 matrix denominated A, therefore:


                                                                                         det(A) = [a11 ,  a12 ; a21 , a22 ]

As we already defined the determinant function we can write some formulas. The formulas for any 2 x 2 and 3 x 3 matrix will be:

                     

                      The determinant function for a 2 x 2 matrix is:


                                                                                      $ det(A)=\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right) $ 

                                                                                               = (a11 * a22) - (a12 * a21 )                        

                   

                      The determinant function for a 3 x 3 matrix is: 


                                                                               $ det(A)=\left(\begin{array}{cccc}a11&a12&a13\\a21&a22&a23\\a31&a32&a33\end{array}\right) $

                                         = (a11 * a22 * a33) + (a12 * a23 * a31) + (a13 * a21 * a32) - (a12 * a21 * a33) - (a11 * a23 * a32) - (a13 * a22 * a31



Properties of Determinants:


Theorem 1: Let A be an n x n matrix then; det(A) = det(At) </<u><u></u<u></u<u>Theorem 2: If a matrix B results from matrix A by interchanging two different rows (columns) of A, then; det(B) = - det(A) 

Theorem 3: If two rows (columns) of A are equal, then; det(A) = 0

Theorem 4: If a row (column) of A consists entirely of zeros, then; det(A) = 0

Theorem 5: If B obtained from A by multiplying a row (column) of A by a real number k, then;det(B) = kdet(A)       Theorem 6: If B = [bij] is obained from A = [aij] by adding to each element of the rth row (column) of A, k times the corresponding element of the sth row (column), r not equal s, of A, then; det(B) = det(A) </u<u>Theorem 7: If a matrix A = [aij] is upper (lower) triangular, then; det(A) = a11*a12...ann ; tha is, the determinant of a triangular matrix is the product of the element on themain diagonal.                                                       

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang