Line 23: Line 23:
 
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;or &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>R2 = \frac{SS_{xy}^2}{SS_{xx} SS_{yy} }</math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ( 2 )  
 
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;or &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>R2 = \frac{SS_{xy}^2}{SS_{xx} SS_{yy} }</math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ( 2 )  
  
&nbsp;&nbsp; &nbsp; &nbsp; with &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>SS_{xy} = \frac{SS_{xy}^2}{SS_{xx} SS_{yy} }</math>  
+
&nbsp;&nbsp; &nbsp; &nbsp; with &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>SS_{xy} = \sum_{i=1}^N (y_i - y_{avg})(x_i - x_{avg})</math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;( 3 ) &nbsp;&nbsp; &nbsp; &nbsp;
 +
 
 +
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>SS_{yy} = \sum_{i=1}^N (y_i - y_{avg})^2</math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ( 4 )
 +
 
 +
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>SS_{xx} = \sum_{i=1}^N (x_i - x_{avg})^2</math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;( 5 )
 +
 
 +
<br> <br>  
  
 
<br>  
 
<br>  
Line 50: Line 56:
 
----
 
----
  
[[2011 Fall ECE 438 Boutin|Back to 2011 Fall ECE 438 Boutin]]&lt;/math&gt;
+
[[2011 Fall ECE 438 Boutin|Back to 2011 Fall ECE 438 Boutin]]  
  
 
[[Category:2011_Fall_ECE_438_Boutin]]
 
[[Category:2011_Fall_ECE_438_Boutin]]

Revision as of 05:39, 6 December 2011


Similarity analysis of images

Mona2.jpg

Look at the Mona Lisa(s) above. They are very similar, aren't they? It's obvious, and you can say that they have high similarity. But given the pictures below, how to determine the similarity? Let's see!

Emo mona lisa.jpg



Introduction & Background

Generally, there are two criteria to determine image similarity, the coefficient of determination (R2) and the mean absolute error (MAE). Here in this project, I use the coefficient of determination for similarity analysis.

The computation of R2 is:

                       $ R2 = 1 - {\sum_{i=1}^N (y_i - y_{pre})^2 / \sum_{i=1}^N (y_i - y_{avg})^2 } $              ( 1 )

          or          $ R2 = \frac{SS_{xy}^2}{SS_{xx} SS_{yy} } $                                                                         ( 2 )

       with          $ SS_{xy} = \sum_{i=1}^N (y_i - y_{avg})(x_i - x_{avg}) $                                  ( 3 )       

                       $ SS_{yy} = \sum_{i=1}^N (y_i - y_{avg})^2 $                                                           ( 4 )

                       $ SS_{xx} = \sum_{i=1}^N (x_i - x_{avg})^2 $                                                          ( 5 )









                                                 ...to be continued






Back to 2011 Fall ECE 438 Boutin

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison