Line 19: Line 19:
 
The computation of R2 is:  
 
The computation of R2 is:  
  
                       R2 = 1 - \sum_{n=-\infty}^\infty
+
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>R2 = 1 - {\sum_{i=1}^N (y_i - y_{pre})^2 / \sum_{i=1}^N (y_i - y_{avg})^2 }</math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;( 1 )
 +
 
 +
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;or &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>R2 = \frac{SS_{xy}^2}{SS_{xx} SS_{yy} }</math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ( 2 )
 +
 
 +
&nbsp;&nbsp; &nbsp; &nbsp; with &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>SS_{xy} = \frac{SS_{xy}^2}{SS_{xx} SS_{yy} }</math>
  
 
<br>  
 
<br>  
Line 46: Line 50:
 
----
 
----
  
[[2011 Fall ECE 438 Boutin|Back to 2011 Fall ECE 438 Boutin]]  
+
[[2011 Fall ECE 438 Boutin|Back to 2011 Fall ECE 438 Boutin]]&lt;/math&gt;
  
 
[[Category:2011_Fall_ECE_438_Boutin]]
 
[[Category:2011_Fall_ECE_438_Boutin]]

Revision as of 20:56, 5 December 2011


Similarity analysis of images

Mona2.jpg

Look at the Mona Lisa(s) above. They are very similar, aren't they? It's obvious, and you can say that they have high similarity. But given the pictures below, how to determine the similarity? Let's see!

Emo mona lisa.jpg



Introduction & Background

Generally, there are two criteria to determine image similarity, the coefficient of determination (R2) and the mean absolute error (MAE). Here in this project, I use the coefficient of determination for similarity analysis.

The computation of R2 is:

                       $ R2 = 1 - {\sum_{i=1}^N (y_i - y_{pre})^2 / \sum_{i=1}^N (y_i - y_{avg})^2 } $              ( 1 )

          or          $ R2 = \frac{SS_{xy}^2}{SS_{xx} SS_{yy} } $                                                                         ( 2 )

       with          $ SS_{xy} = \frac{SS_{xy}^2}{SS_{xx} SS_{yy} } $







                                                 ...to be continued






Back to 2011 Fall ECE 438 Boutin</math>

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010