Line 24: | Line 24: | ||
\frac{1}{2} \\ | \frac{1}{2} \\ | ||
1 \\ | 1 \\ | ||
− | \frac{1}{2} | + | \frac{1}{2} |
\end{pmatrix} \cdot | \end{pmatrix} \cdot | ||
\begin{pmatrix} | \begin{pmatrix} | ||
Line 36: | Line 36: | ||
<math>h_2[n] = \frac{1}{2}\delta[n+1] + \delta[n] +\frac{1}{2}\delta[n-1]</math> | <math>h_2[n] = \frac{1}{2}\delta[n+1] + \delta[n] +\frac{1}{2}\delta[n-1]</math> | ||
+ | |||
+ | c) | ||
+ | |||
+ | <math>H_1(\mu) = DTFT{h_1[m]} = -\frac{1}{4}e^{-j\mu(-1)} + e^{-j\mu(0)} -\frac{1}{4}e^{-j\mu(1)}</math> | ||
+ | |||
+ | <math>H_2(\nu) = DTFT{h_2[n]} = \frac{1}{2}e^{-j\nu(-1)} + e^{-j\nu(0)} +\frac{1}{2}e^{-j\nu(1)}</math> | ||
---- | ---- | ||
Revision as of 11:57, 4 December 2011
Homework 8, ECE438, Fall 2011, Prof. Boutin
Question
a)
$ \begin{align} y[m,n] =& -\frac{1}{8}x[m+1,n-1] + \frac{1}{2}x[m,n-1] - \frac{1}{8}x[m-1,n-1] \\ & -\frac{1}{4}x[m+1,n] + x[m,n] -\frac{1}{4}x[m,n-1] \\ & -\frac{1}{8}x[m+1,n+1] + \frac{1}{2}x[m,n+1] -\frac{1}{8}x[m-1,n+1] \end{align} $
b) Yes. The coefficient matrix of h[m,n] can be written as product of two vectors.
$ \begin{pmatrix} -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\ -\frac{1}{4} & 1 & -\frac{1}{4} \\ -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 1 \\ \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{4} & 1 & -\frac{1}{4} \end{pmatrix} $
Therefore the filter can be separate into two 1-D filters.
$ h_1[m] = -\frac{1}{4}\delta[m+1] + \delta[m] -\frac{1}{4}\delta[m-1] $
$ h_2[n] = \frac{1}{2}\delta[n+1] + \delta[n] +\frac{1}{2}\delta[n-1] $
c)
$ H_1(\mu) = DTFT{h_1[m]} = -\frac{1}{4}e^{-j\mu(-1)} + e^{-j\mu(0)} -\frac{1}{4}e^{-j\mu(1)} $
$ H_2(\nu) = DTFT{h_2[n]} = \frac{1}{2}e^{-j\nu(-1)} + e^{-j\nu(0)} +\frac{1}{2}e^{-j\nu(1)} $
Back to Homework 8
Back to ECE 438 Fall 2011