(→Bias of an Estimator, and Unbiased estimators) |
|||
(70 intermediate revisions by 19 users not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:ECE302Fall2008_ProfSanghavi]] | ||
+ | [[Category:probabilities]] | ||
+ | [[Category:ECE302]] | ||
+ | [[Category:cheat sheet]] | ||
+ | |||
+ | =[[ECE302]] Cheat Sheet number 3= | ||
==Covariance== | ==Covariance== | ||
* <math>COV(X,Y)=E[(X-E[X])(Y-E[Y])]\!</math> | * <math>COV(X,Y)=E[(X-E[X])(Y-E[Y])]\!</math> | ||
* <math>COV(X,Y)=E[XY]-E[X]E[Y]\!</math> | * <math>COV(X,Y)=E[XY]-E[X]E[Y]\!</math> | ||
+ | |||
+ | |||
+ | X and Y are uncorrelated if cov(X,Y) = 0 | ||
+ | |||
+ | |||
+ | If X and Y are independent, they are uncorrelated. The converse is not always true. | ||
+ | |||
+ | If either RV X or Y is multiplied by a large constant, then the magnitude of the covariance will also increase. A measure of correlation in an absolute scale is the correlation coefficient. | ||
==Correlation Coefficient== | ==Correlation Coefficient== | ||
<math>\rho(X,Y)= \frac {cov(X,Y)}{\sqrt{var(X)} \sqrt{var(Y)}} \,</math> | <math>\rho(X,Y)= \frac {cov(X,Y)}{\sqrt{var(X)} \sqrt{var(Y)}} \,</math> | ||
+ | <math> = \frac{E[XY]-E[X]E[Y]}{\sqrt{var(X)} \sqrt{var(Y)}} </math> | ||
+ | |||
+ | -1 <= <math>\rho(X,Y) <= 1 </math> | ||
+ | |||
+ | If <math>\rho(X,Y) = 0</math> then x, y are uncorrelated | ||
+ | |||
+ | If <math>\rho(X,Y) = 1 or -1 </math> then x,y are very correlated | ||
==Markov Inequality== | ==Markov Inequality== | ||
Line 11: | Line 32: | ||
* <math>P(X \geq a) \leq E[X]/a\!</math> | * <math>P(X \geq a) \leq E[X]/a\!</math> | ||
for all a > 0 | for all a > 0 | ||
+ | |||
+ | |||
+ | EXAMPLE: | ||
+ | |||
+ | On average it takes 1 hour to catch a fish. What is (an upper bound) the probability it will take 3 hours? | ||
+ | |||
+ | SOLUTION: | ||
+ | |||
+ | Using Markov's inequality, where <math>E[X]\!</math> = 1 and a = 3. | ||
+ | |||
+ | <math> P(X \geq 3) \leq \frac {E[X]}{3} = \frac{1}{3}</math> | ||
+ | |||
+ | so 1/3 is the upper bound to the probability that it will take more than 3 hours to catch a fish. | ||
==Chebyshev Inequality== | ==Chebyshev Inequality== | ||
Line 16: | Line 50: | ||
:<math>\Pr(\left|X-E[X]\right|\geq C)\leq\frac{var(X)}{C^2}.</math> | :<math>\Pr(\left|X-E[X]\right|\geq C)\leq\frac{var(X)}{C^2}.</math> | ||
+ | |||
+ | ==Weak Law of Large Numbers== | ||
+ | The weak law of large numbers states that the sample average converges in probability towards the expected value | ||
+ | :<math>\overline{X}_n \, \xrightarrow{P} \, \mu \qquad\textrm{for}\qquad n \to \infty.</math> | ||
+ | |||
+ | Mn = (X1 + ... + Xn)/n = X1/n + ... + Xn/n | ||
+ | |||
+ | E[Mn] = nE[X]/n = E[X] | ||
+ | |||
+ | Var[Mn] = Var(X1/n) + ... + Var(Xn/n) = Var(X)/n | ||
+ | |||
+ | Pr[ |Mn - E[X]| ] >= Var(Mn)/<math> \sigma^2 = Var(X)/n\sigma^2 </math> | ||
==ML Estimation Rule== | ==ML Estimation Rule== | ||
Line 21: | Line 67: | ||
<math>\hat a_{ML} = \text{max}_a ( Pr(x_i;a))</math> discrete | <math>\hat a_{ML} = \text{max}_a ( Pr(x_i;a))</math> discrete | ||
+ | |||
+ | |||
+ | If X is a binomial (n,p), where is X is number of heads n tosses, | ||
+ | Then, for any fixed k-value; | ||
+ | |||
+ | <math>\hat p_{ML}(k) = k/n</math> | ||
+ | |||
+ | If X is exponential then it's ML estimate is: | ||
+ | |||
+ | <math> \frac{1}{ \overline{X}} </math> | ||
==MAP Estimation Rule== | ==MAP Estimation Rule== | ||
+ | |||
+ | <math>\hat \theta_{MAP} = \text{argmax}_\theta ( f_{\theta|X}(\theta|x))</math> | ||
+ | |||
+ | Which can be expanded and turned into the following (if I am not mistaken): | ||
+ | |||
+ | <math>\hat \theta_{MAP} = \text{argmax}_\theta ( f_{X|\theta}(x|\theta)f_{\theta}(\theta))</math> | ||
+ | |||
+ | for discrete case: | ||
+ | |||
+ | <math>\hat \theta_{MAP} = \text{argmax}_\theta ( P_{X|\theta}(x|\theta)P_{\theta}(\theta))</math> | ||
==Bias of an Estimator, and Unbiased estimators== | ==Bias of an Estimator, and Unbiased estimators== | ||
− | + | An estimator is unbiased if: | |
− | <math>E[hat a_{ML}] = a</math> | + | <math>E[\hat a_{ML}] = a</math> for all values of a |
+ | |||
+ | |||
+ | |||
+ | '''A biased estimator can be made unbiased ''' : Let an event X be uniform from (0,a). Now <math>E[\hat a_{ML}] = a</math> = E[X] = a/2,which makes it biased as it is not equal to a. Now we can make <math>E[\hat a_{ML}]= a</math> if a^{ML}=2x, which makes it unbiased. | ||
==Confidence Intervals, and how to get them via Chebyshev== | ==Confidence Intervals, and how to get them via Chebyshev== | ||
+ | |||
+ | <math> \theta \text{ is unknown and fixed}</math> | ||
+ | |||
+ | <math>\hat \theta \text{ is random and should be close to } \theta \text{ most of the time}</math> | ||
+ | |||
+ | <math> if Pr[|\hat \theta \text{-} \theta|] <= (1-a) \text { then we say we have (1-a) confidence in the interval } [\hat \theta - E, \hat \theta + E]</math> | ||
+ | |||
+ | |||
+ | Confidence level of <math> (1-a) </math> if <math>Pr[\hat \theta \text{-} \delta < \theta < \hat \theta + \delta] >= (1-a) | ||
+ | for all \theta</math> | ||
+ | |||
+ | ==Definition of the term Unbiased estimators== | ||
+ | |||
+ | The ML estimator is said to be UNBIASED if its expected value is the true value for all true values. | ||
+ | |||
+ | (ie, A estimate <math>\hat \theta</math> for parameter <math>\theta</math> is said to be unbiased if <math>\forall \theta \text{(where }\theta\text{ exists)}, E(\hat \theta) = \theta</math>) | ||
+ | |||
+ | ==Few equations from previous material== | ||
+ | |||
+ | ::X and Y are independent | ||
+ | |||
+ | *<math>E[X] = \int^\infty_{-\infty}x*f_X(x)dx\!</math> | ||
+ | |||
+ | *<math>E[XY] = E[X]E[Y]\!</math> | ||
+ | |||
+ | *<math>Var(X) = E[X^2] - (E[X])^2\!</math> | ||
+ | |||
+ | Marginal PDF | ||
+ | |||
+ | *<math>E(g(x))=\int^\infty_{-\infty} g(x)f_X(x,y) dy</math> | ||
+ | |||
+ | *<math>f_X(x) = \int^\infty_{-\infty} f_{XY}(x,y) dy</math> | ||
+ | |||
+ | *<math>f_Y(y) = \int^\infty_{-\infty} f_{XY}(x,y) dx</math> | ||
+ | ---- | ||
+ | [[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]] |
Latest revision as of 12:06, 22 November 2011
Contents
- 1 ECE302 Cheat Sheet number 3
- 1.1 Covariance
- 1.2 Correlation Coefficient
- 1.3 Markov Inequality
- 1.4 Chebyshev Inequality
- 1.5 Weak Law of Large Numbers
- 1.6 ML Estimation Rule
- 1.7 MAP Estimation Rule
- 1.8 Bias of an Estimator, and Unbiased estimators
- 1.9 Confidence Intervals, and how to get them via Chebyshev
- 1.10 Definition of the term Unbiased estimators
- 1.11 Few equations from previous material
ECE302 Cheat Sheet number 3
Covariance
- $ COV(X,Y)=E[(X-E[X])(Y-E[Y])]\! $
- $ COV(X,Y)=E[XY]-E[X]E[Y]\! $
X and Y are uncorrelated if cov(X,Y) = 0
If X and Y are independent, they are uncorrelated. The converse is not always true.
If either RV X or Y is multiplied by a large constant, then the magnitude of the covariance will also increase. A measure of correlation in an absolute scale is the correlation coefficient.
Correlation Coefficient
$ \rho(X,Y)= \frac {cov(X,Y)}{\sqrt{var(X)} \sqrt{var(Y)}} \, $ $ = \frac{E[XY]-E[X]E[Y]}{\sqrt{var(X)} \sqrt{var(Y)}} $
-1 <= $ \rho(X,Y) <= 1 $
If $ \rho(X,Y) = 0 $ then x, y are uncorrelated
If $ \rho(X,Y) = 1 or -1 $ then x,y are very correlated
Markov Inequality
Loosely speaking: In a nonnegative RV has a small mean, then the probability that it takes a large value must also be small.
- $ P(X \geq a) \leq E[X]/a\! $
for all a > 0
EXAMPLE:
On average it takes 1 hour to catch a fish. What is (an upper bound) the probability it will take 3 hours?
SOLUTION:
Using Markov's inequality, where $ E[X]\! $ = 1 and a = 3.
$ P(X \geq 3) \leq \frac {E[X]}{3} = \frac{1}{3} $
so 1/3 is the upper bound to the probability that it will take more than 3 hours to catch a fish.
Chebyshev Inequality
"Any RV is likely to be close to its mean"
- $ \Pr(\left|X-E[X]\right|\geq C)\leq\frac{var(X)}{C^2}. $
Weak Law of Large Numbers
The weak law of large numbers states that the sample average converges in probability towards the expected value
- $ \overline{X}_n \, \xrightarrow{P} \, \mu \qquad\textrm{for}\qquad n \to \infty. $
Mn = (X1 + ... + Xn)/n = X1/n + ... + Xn/n
E[Mn] = nE[X]/n = E[X]
Var[Mn] = Var(X1/n) + ... + Var(Xn/n) = Var(X)/n
Pr[ |Mn - E[X]| ] >= Var(Mn)/$ \sigma^2 = Var(X)/n\sigma^2 $
ML Estimation Rule
$ \hat a_{ML} = \text{max}_a ( f_{X}(x_i;a)) $ continuous
$ \hat a_{ML} = \text{max}_a ( Pr(x_i;a)) $ discrete
If X is a binomial (n,p), where is X is number of heads n tosses,
Then, for any fixed k-value;
$ \hat p_{ML}(k) = k/n $
If X is exponential then it's ML estimate is:
$ \frac{1}{ \overline{X}} $
MAP Estimation Rule
$ \hat \theta_{MAP} = \text{argmax}_\theta ( f_{\theta|X}(\theta|x)) $
Which can be expanded and turned into the following (if I am not mistaken):
$ \hat \theta_{MAP} = \text{argmax}_\theta ( f_{X|\theta}(x|\theta)f_{\theta}(\theta)) $
for discrete case:
$ \hat \theta_{MAP} = \text{argmax}_\theta ( P_{X|\theta}(x|\theta)P_{\theta}(\theta)) $
Bias of an Estimator, and Unbiased estimators
An estimator is unbiased if: $ E[\hat a_{ML}] = a $ for all values of a
A biased estimator can be made unbiased : Let an event X be uniform from (0,a). Now $ E[\hat a_{ML}] = a $ = E[X] = a/2,which makes it biased as it is not equal to a. Now we can make $ E[\hat a_{ML}]= a $ if a^{ML}=2x, which makes it unbiased.
Confidence Intervals, and how to get them via Chebyshev
$ \theta \text{ is unknown and fixed} $
$ \hat \theta \text{ is random and should be close to } \theta \text{ most of the time} $
$ if Pr[|\hat \theta \text{-} \theta|] <= (1-a) \text { then we say we have (1-a) confidence in the interval } [\hat \theta - E, \hat \theta + E] $
Confidence level of $ (1-a) $ if $ Pr[\hat \theta \text{-} \delta < \theta < \hat \theta + \delta] >= (1-a) for all \theta $
Definition of the term Unbiased estimators
The ML estimator is said to be UNBIASED if its expected value is the true value for all true values.
(ie, A estimate $ \hat \theta $ for parameter $ \theta $ is said to be unbiased if $ \forall \theta \text{(where }\theta\text{ exists)}, E(\hat \theta) = \theta $)
Few equations from previous material
- X and Y are independent
- $ E[X] = \int^\infty_{-\infty}x*f_X(x)dx\! $
- $ E[XY] = E[X]E[Y]\! $
- $ Var(X) = E[X^2] - (E[X])^2\! $
Marginal PDF
- $ E(g(x))=\int^\infty_{-\infty} g(x)f_X(x,y) dy $
- $ f_X(x) = \int^\infty_{-\infty} f_{XY}(x,y) dy $
- $ f_Y(y) = \int^\infty_{-\infty} f_{XY}(x,y) dx $