(Problem 3: An Uncommon PDF)
 
(12 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 +
[[Category:ECE302Fall2008_ProfSanghavi]]
 +
[[Category:probabilities]]
 +
[[Category:ECE302]]
 +
[[Category:homework]]
 +
[[Category:problem solving]]
 +
 
== Instructions ==
 
== Instructions ==
 
Homework 6 can be [https://engineering.purdue.edu/ece302/homeworks/HW6FA08.pdf downloaded here] on the [https://engineering.purdue.edu/ece302/ ECE 302 course website].
 
Homework 6 can be [https://engineering.purdue.edu/ece302/homeworks/HW6FA08.pdf downloaded here] on the [https://engineering.purdue.edu/ece302/ ECE 302 course website].
Line 11: Line 17:
  
 
*[[Tiffany Sukwanto 6.1_ECE302Fall2008sanghavi]]
 
*[[Tiffany Sukwanto 6.1_ECE302Fall2008sanghavi]]
 +
 +
*[[Joshua Long 6.1_ECE302Fall2008sanghavi]]
 +
 +
*[[Justin Mauck 6.1_ECE302Fall2008sanghavi]]
  
 
== Problem 2: Fair Wages ==
 
== Problem 2: Fair Wages ==
Line 18: Line 28:
 
*[[Gregory Pajot 6.2_ECE302Fall2008sanghavi]]
 
*[[Gregory Pajot 6.2_ECE302Fall2008sanghavi]]
 
*[[Virgil Hsieh 6.2_ECE302Fall2008sanghavi]]
 
*[[Virgil Hsieh 6.2_ECE302Fall2008sanghavi]]
 +
*[[Zhongtian Wang 6.2_ECE302Fall2008sanghavi]]
 
*[[Michael Allen 6.2_ECE302Fall2008sanghavi]]
 
*[[Michael Allen 6.2_ECE302Fall2008sanghavi]]
 
*[[Christopher Wacnik 6.2_ECE302Fall2008sanghavi]]
 
*[[Christopher Wacnik 6.2_ECE302Fall2008sanghavi]]
 
*[[Sahil Khosla 6.2_ECE302Fall2008sanghavi]]
 
*[[Sahil Khosla 6.2_ECE302Fall2008sanghavi]]
 
*[[AJ Hartnett 6.2 --Different answer than above!_ECE302Fall2008sanghavi]]
 
*[[AJ Hartnett 6.2 --Different answer than above!_ECE302Fall2008sanghavi]]
 +
*[[Jaewoo Choi 6.2_ECE302Fall2008sanghavi]]
  
 
== Problem 3: An Uncommon PDF ==
 
== Problem 3: An Uncommon PDF ==
Line 47: Line 59:
 
*[[Kunal Kapoor 6.3_ECE302Fall2008sanghavi]]
 
*[[Kunal Kapoor 6.3_ECE302Fall2008sanghavi]]
  
*[[Monsu Mathew_ECE302Fall2008sanghavi]]
+
*[[Monsu Mathew 6.3_ECE302Fall2008sanghavi]]
  
 
== Problem 4: Gaussian Coordinates ==
 
== Problem 4: Gaussian Coordinates ==
Line 57: Line 69:
  
 
*[[Umang Jhunjhunwala 6.4_ECE302Fall2008sanghavi]]
 
*[[Umang Jhunjhunwala 6.4_ECE302Fall2008sanghavi]]
 +
 +
*[[Spencer Mitchell 6.4_ECE302Fall2008sanghavi]]
 +
 +
*[[Steven Streeter 6.4_ECE302Fall2008sanghavi]]
 +
----
 +
[[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]]

Latest revision as of 11:57, 22 November 2011


Instructions

Homework 6 can be downloaded here on the ECE 302 course website.

Problem 1: Ceiling of an Exponential

$ X $ is an exponential random variable with paramter $ \lambda $. $ Y = \mathrm{ceil}(X) $, where the ceiling function $ \mathrm{ceil}(\cdot) $ rounds its argument up to the closest integer, i.e.:

        $ \mathrm{ceil}(a) $ = $ a $ if $ a $ is an integer
               = the smallest integer bigger than $ a $ if $ a $ is not an integer

What is the PMF of $ Y $? Is it one of the common random variables? (Hint: for all $ k $, find the quantity $ P(Y > k) $. Then find the PMF)

Problem 2: Fair Wages

``I do not have problems with anyone earning above average, as long as no one earns below average." - a quote (mistakenly attributed to) Max Weber. Can such a situation occur? Justify your answer.

Problem 3: An Uncommon PDF

Let $ Y $ be a random variable with probability density function (PDF)

$ f_Y(v) = \left\{\begin{array}{ll} 1 + v,& -1\leq v\leq0,\\ v,& 0<v\leq1,\\ 0,& \mbox{otherwise}. \end{array}\right. $

Find

  • (a) $ P(|Y| < 1/2) $
  • (b) $ P(Y > 0|Y < 1/2) $
  • (c) $ E[Y] $.

Problem 4: Gaussian Coordinates

A random point $ (X,Y) $ on a plane is chosen as follows: $ X $ and $ Y $ are chosen independently, with each one being a Gaussian random variable with zero mean and variance of 1. Let $ D $ be the square of the (random) distance of the point from the center. Find the PDF of $ D $. Is $ D $ one of the common random variables?


Back to ECE302 Fall 2008 Prof. Sanghavi

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang