Line 23: | Line 23: | ||
&= (e^{jmu} + 1 + e^{-jmu})\cdot(1 + e^{-jnv} + e^{-2jnv})\\ | &= (e^{jmu} + 1 + e^{-jmu})\cdot(1 + e^{-jnv} + e^{-2jnv})\\ | ||
\end{align}</math> | \end{align}</math> | ||
+ | |||
--[[User:Xiao1|Xiao1]] 23:03, 19 November 2011 (UTC) | --[[User:Xiao1|Xiao1]] 23:03, 19 November 2011 (UTC) | ||
===Answer 2=== | ===Answer 2=== |
Revision as of 18:03, 19 November 2011
Contents
Practice Problem on Discrete-space Fourier transform computation
Compute the discrete-space Fourier transform of the following signal:
$ f[m,n]= \left( u[n]-u[n-3] \right) \left( u[m+1]-u[m-2] \right) $
(Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
$ \begin{align} F [u,v] &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m,n]e^{-j(mu + nv)}\\ &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right) \left( u[m+1]-u[m-2] \right)e^{-j(mu + nv)}\\ &= \sum_{m=-\infty}^{\infty} \left( u[m+1]-u[m-2] \right) e^{-j(mu)} \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right)e^{-j(nv)}\\ &= (e^{jmu} + 1 + e^{-jmu})\cdot(1 + e^{-jnv} + e^{-2jnv})\\ \end{align} $
--Xiao1 23:03, 19 November 2011 (UTC)
Answer 2
Write it here.