Line 16: Line 16:
 
----
 
----
 
===Answer 1===
 
===Answer 1===
Write it here.
+
<math>
 +
\begin{align}
 +
F [u,v] &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m,n]e^{-j(mu + nv)}\\
 +
&= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}  \left( u[n]-u[n-3] \right) \left( u[m+1]-u[m-2] \right)e^{-j(mu + nv)}\\
 +
&= \sum_{m=-\infty}^{\infty} \left( u[m+1]-u[m-2] \right) e^{-j(mu)}  \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right)e^{-j(nv)}\\
 +
&= (e^{jmu} + 1 + e^{-jmu})\cdot(1 + e^{-jnv} + e^{-2jnv})\\
 +
\end{align}</math>
  
 
===Answer 2===
 
===Answer 2===

Revision as of 18:03, 19 November 2011

Practice Problem on Discrete-space Fourier transform computation

Compute the discrete-space Fourier transform of the following signal:

$ f[m,n]= \left( u[n]-u[n-3] \right) \left( u[m+1]-u[m-2] \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \begin{align} F [u,v] &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m,n]e^{-j(mu + nv)}\\ &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right) \left( u[m+1]-u[m-2] \right)e^{-j(mu + nv)}\\ &= \sum_{m=-\infty}^{\infty} \left( u[m+1]-u[m-2] \right) e^{-j(mu)} \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right)e^{-j(nv)}\\ &= (e^{jmu} + 1 + e^{-jmu})\cdot(1 + e^{-jnv} + e^{-2jnv})\\ \end{align} $

Answer 2

Write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett