(New page: *Solve the following problems on Spectral Analysis of discrete-space (2D) signals and share your answers for feedback **[[Obtain_DSFT_rectangle|Obtain the discrete-space Fourier transfo...)
 
Line 1: Line 1:
 +
= Lecture 35 Blog, [[ECE438]] Fall 2011, [[User:Mboutin|Prof. Boutin]] =
 +
Monday November 14, 2011 (Week 13) - See [[Lecture Schedule ECE438Fall11 Boutin|Course Outline]].
 +
----
 +
Today we finished our discussion of the [[:Category:continuous-space Fourier transform|CSFT]]  and inverse [[:Category:continuous-space Fourier transform|CSFT]] in polar coordinates. 
  
 +
==Relevant Rhea pages==
 +
*[[Continuous_Space_Fourier_Transform_(frequences_in_hertz)|Table of CSFT pairs and properties]]
  
 
+
==Action items==
 
*Solve the following problems on Spectral Analysis of discrete-space (2D) signals and share your answers for feedback
 
*Solve the following problems on Spectral Analysis of discrete-space (2D) signals and share your answers for feedback
 
**[[Obtain_DSFT_rectangle|Obtain the discrete-space Fourier transform of a rectangle]]  
 
**[[Obtain_DSFT_rectangle|Obtain the discrete-space Fourier transform of a rectangle]]  
 
**[[Compute_DSFT_product_two_step_functions_ECE438F11|Compute the discrete-space Fourier transform of this function]]  
 
**[[Compute_DSFT_product_two_step_functions_ECE438F11|Compute the discrete-space Fourier transform of this function]]  
 
**[[Compute_DSFT_cosine_ECE438F11|Compute the discrete-space Fourier transform of this cosine]]
 
**[[Compute_DSFT_cosine_ECE438F11|Compute the discrete-space Fourier transform of this cosine]]
 +
 +
 +
<br> Previous: [[Lecture34ECE438F11|Lecture 34]] Next: [[Lecture36ECE438F11|Lecture 36]]
 +
----
 +
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011]]
 +
 +
[[Category:continuous-space Fourier transform]]
 +
[[Category:2011_Fall_ECE_438_Boutin]]
 +
[[Category:Blog]]
 +
[[Category:ECE438]]

Revision as of 09:52, 14 November 2011

Lecture 35 Blog, ECE438 Fall 2011, Prof. Boutin

Monday November 14, 2011 (Week 13) - See Course Outline.


Today we finished our discussion of the CSFT and inverse CSFT in polar coordinates.

Relevant Rhea pages

Action items



Previous: Lecture 34 Next: Lecture 36


Back to ECE438 Fall 2011

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett