Line 17: Line 17:
 
Justify your answer.
 
Justify your answer.
 
----  
 
----  
----
 
 
==Share your answers below==
 
==Share your answers below==
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Line 27: Line 26:
 
<math> = \frac{1}{2j\pi(u)}\frac{1}{2j\pi(v)}[-e^{-j \pi (u)} + e^{j \pi (u)}][-e^{-j \pi (v)} + e^{j \pi (v)}]</math>
 
<math> = \frac{1}{2j\pi(u)}\frac{1}{2j\pi(v)}[-e^{-j \pi (u)} + e^{j \pi (u)}][-e^{-j \pi (v)} + e^{j \pi (v)}]</math>
  
 +
----
 
===Answer 2===
 
===Answer 2===
Write it here
+
 
 +
<math> F(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-2j \pi (ux +vy) }dxdy = \int_{-\frac{1}{2}}^{\frac{1}{2}}\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-2j \pi (ux +vy) }dxdy</math>
 +
<math> = \frac{(e^{j \pi u}-e^{-j \pi u} )(e^{j \pi v}-e^{-j \pi v})}{(2j\pi u)(2j\pi v)}</math>
 +
 
 +
<math> = \frac{sin(u)sin(v)}{(\pi u)(\pi v)} = sinc(u)sinc(v)= sinc(u,v)</math>
 +
----
 +
 
 
===Answer 3===
 
===Answer 3===
 
Write it here.
 
Write it here.
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Revision as of 18:25, 12 November 2011


Continuous-space Fourier transform of the 2D "rect" function (Practice Problem)

Compute the Continuous-space Fourier transform (CSFT) of

$ f(x,y)= \left\{ \begin{array}{ll} 1, & \text{ if } |x|<\frac{1}{2} \text{ and } |y|<\frac{1}{2}\\ 0, & \text{ else}. \end{array} \right. $

Justify your answer.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x[n] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-2j \pi (ux +vy) }dxdy $

$ = \frac{1}{2j\pi(u)}\frac{1}{2j\pi(v)}[-e^{-j \pi (u)} + e^{j \pi (u)}][-e^{-j \pi (v)} + e^{j \pi (v)}] $


Answer 2

$ F(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-2j \pi (ux +vy) }dxdy = \int_{-\frac{1}{2}}^{\frac{1}{2}}\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-2j \pi (ux +vy) }dxdy $ $ = \frac{(e^{j \pi u}-e^{-j \pi u} )(e^{j \pi v}-e^{-j \pi v})}{(2j\pi u)(2j\pi v)} $

$ = \frac{sin(u)sin(v)}{(\pi u)(\pi v)} = sinc(u)sinc(v)= sinc(u,v) $


Answer 3

Write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn