Line 37: Line 37:
 
|-
 
|-
 
|
 
|
|<math> \frac{dy}{dx} = \frac{ \frac{dy}{du}}{\frac{dx}{du}}</math>
+
|<math> \frac{dy}{dx} = \frac{dy}{du}/\frac{dx}{du}</math>
 
|-
 
|-
 
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Leibnitz Rule for Successive Derivatives of a Product
 
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Leibnitz Rule for Successive Derivatives of a Product
Line 91: Line 91:
 
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="3" | Derivatives of hyperbolic functions
 
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="3" | Derivatives of hyperbolic functions
 
|-
 
|-
| <math> \frac{d}{dx} \operatorname{sh}\ u = \operatorname{ch}\ u \frac{du}{dx}</math>
+
| <math> \frac{d}{dx} \sinh u = \cosh u \frac{du}{dx}</math>
 
|-
 
|-
| <math> \frac{d}{dx} \operatorname{ch}\ u = \operatorname{sh}\ u \frac{du}{dx}</math>
+
| <math> \frac{d}{dx} \cosh u = \sinh u \frac{du}{dx}</math>
 
|-
 
|-
| <math> \frac{d}{dx} \operatorname{th}\ u = \frac{1}{\operatorname{ch^2}\ u} \frac{du}{dx}</math>
+
| <math> \frac{d}{dx} \tanh u = \frac{1}{\cosh^2 u} \frac{du}{dx}</math>
 
|-
 
|-
| <math> \frac{d}{dx} \operatorname{coth}\ u = - \frac{1}{\operatorname{sh^2}\ u} \frac{du}{dx}</math>
+
| <math> \frac{d}{dx} \coth u = - \frac{1}{\sinh^2 u} \frac{du}{dx}</math>
 
|-
 
|-
| <math> \frac{d}{dx} \frac{1}{\operatorname{ch}\ u} = - \frac{\operatorname{th}\ u}{\operatorname{ch}\ u} \frac{du}{dx} </math>
+
| <math> \frac{d}{dx} \frac{1}{\cosh u} = - \frac{\tanh u}{\cosh u} \frac{du}{dx} </math>
 
|-
 
|-
| <math> \frac{d}{dx} \frac{1}{\operatorname{sh}\ u} = - \frac{\operatorname{coth}\ u}{\operatorname{sh}\ u} \frac{du}{dx} </math>
+
| <math> \frac{d}{dx} \frac{1}{\sinh u} = - \frac{\coth u}{\sinh u} \frac{du}{dx} </math>
 
|-  
 
|-  
| <math> \frac{d}{dx} \arg \operatorname{sh}\ u = \frac{1}{\sqrt{u^2+1}} \frac{du}{dx}</math>
+
| <math> \frac{d}{dx}\ \operatorname{arsinh}\ u = \frac{1}{\sqrt{u^2+1}} \frac{du}{dx}</math>
 
|-
 
|-
| <math> \frac{d}{dx} \arg \operatorname{ch}\ u = \frac{\pm 1}{\sqrt{u^2-1}} \frac{du}{dx} \qquad ( + si \ arg \ \operatorname{ch}\ u > 0, \ u > 1 \ ; \ - si \ arg \ \operatorname{ch}\ u < 0, \ u > 1 ) </math>
+
| <math> \frac{d}{dx}\ \operatorname{arcosh}\ u = \frac{1}{\sqrt{u^2-1}} \frac{du}{dx}</math>
 
|-
 
|-
| <math> \frac{d}{dx} \arg \operatorname{th}\ u = \frac{1}{1-u^2} \frac{du}{dx} \qquad ( \ -1 < u < 1 \ ) </math>
+
| <math> \frac{d}{dx}\ \operatorname{artanh}\ u = \frac{1}{1-u^2} \frac{du}{dx} \qquad ( \ -1 < u < 1 \ ) </math>
 
|-
 
|-
| <math> \frac{d}{dx} \arg \operatorname{coth}\ u = \frac{1}{1-u^2} \frac{du}{dx} \qquad ( \ u > 1 \ or \ u < -1 \ ) </math>
+
| <math> \frac{d}{dx}\ \operatorname{arcoth}\ u = \frac{1}{1-u^2} \frac{du}{dx} \qquad ( \ u > 1 \ or \ u < -1 \ ) </math>
 
|-
 
|-
 
|}
 
|}

Revision as of 10:57, 12 November 2011

If you enjoy using this collective table of formulas, please consider donating to Project Rhea or becoming a sponsor. DonateNow.png


Table of Derivatives
General Rules
Derivative of a constant $ \frac{d}{dx}\left( c \right) = 0, \ \text{ for any constant }c $
$ \frac{d}{dx}\left( c x \right) = c, \ \text{ for any constant }c $
Linearity $ \frac{d}{dx}\left( c_1 u_1+c_2 u_2 \right) = c_1 \frac{d}{dx}\left( u_1 \right)+c_2 \frac{d}{dx}\left( u_2 \right), \ \text{ for any constants }c_1, c_2 $
Quotient rule $ \frac{d}{dx} ( \frac{u}{v} ) = \frac{v ( \frac{du}{dx} ) - u ( \frac{dv}{dx} )}{v^2} $
Exponent rule $ \frac{d}{dx} ( u^n ) = n u^{n-1} \frac{du}{dx} $
Chain rule $ \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} $
$ \frac{du}{dx} = \frac{1}{\frac{dx}{du}} $
$ \frac{dy}{dx} = \frac{dy}{du}/\frac{dx}{du} $
Leibnitz Rule for Successive Derivatives of a Product
first order $ \frac{d}{dx}\left( u v \right)= u \frac{dv }{dx} + v \frac{du }{dx} $
second order $ \frac{d^2}{dx^2}\left( u v \right)= u \frac{d^2v }{dx^2} + 2\frac{du }{dx}\frac{dv }{dx}+ v \frac{d^2u }{dx^2} $
third order $ \frac{d^3}{dx^3}\left( u v \right)= u \frac{d^3v }{dx^3} + 3 \frac{du }{dx}\frac{d^2v }{dx^2}+ 3 \frac{du^2 }{dx^2}\frac{d v }{dx}+ v \frac{d^3u }{dx^3} $ credit
n-th order $ \frac{d^n}{dx^n}\left( u v \right)= u \frac{d^n v }{dx^n} + \left( \begin{array}{cc}n \\ 1 \end{array}\right) \frac{du }{dx}\frac{d^{n-1}v }{dx^{n-1}} + \left( \begin{array}{cc}n \\ 2 \end{array}\right) \frac{d^2u}{dx^2}\frac{d^{n-2}v }{dx^{n-2}}+ \ldots + v \frac{d^n u }{dx^n} $
Derivatives of trigonometric functions
$ \frac {d}{dx} \sin u = \cos u \frac{du}{dx} $
$ \frac {d}{dx} \cos u = - \sin u \frac{du}{dx} $
$ \frac {d}{dx} \tan u = \frac{1}{\cos^2 u} \frac{du}{dx} $
$ \frac {d}{dx} \cot u = - \frac{1}{\sin^2 u} \frac{du}{dx} $
$ \frac {d}{dx} \frac{1}{\cos u} = \frac{\tan u}{\cos u} \frac{du}{dx} $
$ \frac {d}{dx} \frac{1}{\sin u} = - \frac{\cot u}{\sin u} \frac{du}{dx} $
$ \frac {d}{dx} \arcsin u = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx} \qquad ( - \frac{\pi}{2} < \arcsin u < \frac{\pi}{2} ) $
$ \frac {d}{dx} \arccos u = - \frac{1}{\sqrt{1-u^2}} \frac{du}{dx} \qquad ( 0 < \arccos u < \pi ) $
$ \frac {d}{dx} \arctan u = \frac{1}{1+u^2} \frac{du}{dx} \qquad ( - \frac{\pi}{2} < \arctan u < \frac{\pi}{2} ) $
$ \frac {d}{dx} \arccot u = - \frac{1}{1+u^2} \frac{du}{dx} \qquad ( 0 < \arccot u < \pi ) $
Derivatives of exponential and logarithm functions
$ \frac{d}{dx} \log_a u = \frac{log_a e}{u} \frac{du}{dx} \qquad a \neq 0,1 $
$ \frac{d}{dx} \ln u = \frac{d}{dx} log_e u = \frac{1}{u} \frac{du}{dx} $
$ \frac{d}{dx} a^u = a^u \ln a \frac{du}{dx} $
$ \frac{d}{dx} e^u = e^u \frac{du}{dx} $
$ \frac{d}{dx} u^v = \frac{d}{dx} e^{v ln u} = e^{v ln u} \frac {d}{dx} [ v ln u ] = v u^{v-1} \frac{du}{dx} + u^v ln u \frac{dv}{dx} $
Derivatives of hyperbolic functions
$ \frac{d}{dx} \sinh u = \cosh u \frac{du}{dx} $
$ \frac{d}{dx} \cosh u = \sinh u \frac{du}{dx} $
$ \frac{d}{dx} \tanh u = \frac{1}{\cosh^2 u} \frac{du}{dx} $
$ \frac{d}{dx} \coth u = - \frac{1}{\sinh^2 u} \frac{du}{dx} $
$ \frac{d}{dx} \frac{1}{\cosh u} = - \frac{\tanh u}{\cosh u} \frac{du}{dx} $
$ \frac{d}{dx} \frac{1}{\sinh u} = - \frac{\coth u}{\sinh u} \frac{du}{dx} $
$ \frac{d}{dx}\ \operatorname{arsinh}\ u = \frac{1}{\sqrt{u^2+1}} \frac{du}{dx} $
$ \frac{d}{dx}\ \operatorname{arcosh}\ u = \frac{1}{\sqrt{u^2-1}} \frac{du}{dx} $
$ \frac{d}{dx}\ \operatorname{artanh}\ u = \frac{1}{1-u^2} \frac{du}{dx} \qquad ( \ -1 < u < 1 \ ) $
$ \frac{d}{dx}\ \operatorname{arcoth}\ u = \frac{1}{1-u^2} \frac{du}{dx} \qquad ( \ u > 1 \ or \ u < -1 \ ) $


Back to Collective Table of Formulas

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett