(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
= Practice Question on Nyquist rate  =
+
= [[:Category:Problem_solving|Practice Question]] on Nyquist rate  =
  
 
What is the Nyquist rate of the signal  
 
What is the Nyquist rate of the signal  
  
<math>x(t) = \frac{ \sin ( \pi t )}{\pi t} \frac{ \sin ( \pi t )}{\pi t} ?</math>  
+
<math> x(t) = \frac{ \sin ( \pi t )}{\pi t} \frac{ \sin ( \pi t )}{\pi t} </math>  
  
 
----
 
----
Line 15: Line 15:
 
=== Answer 1  ===
 
=== Answer 1  ===
  
Use CTFT to find the frequency response
+
Use CTFT to find the frequency response  
  
Using table, we know FT(sin(pi t)/(pi t)) --&gt; u(w+W) - u(w-W)
+
Using table, we know FT(sin(pi t)/(pi t)) --&gt; u(w+W) - u(w-W)  
  
X(w) =&nbsp;[u(w+pi) - u(w-pi)] * [u(w+pi) - u(w-pi)]
+
X(w) =&nbsp;[u(w+pi) - u(w-pi)] * [u(w+pi) - u(w-pi)]  
  
&nbsp;&nbsp; &nbsp; &nbsp; = int<sub>-infinity</sub><sup>infinity</sup>&nbsp;( [u(W+pi) - u(W-pi)] [u(w-W+pi) - u(w-W-pi)] )dW<sup></sup><sub></sub><sub></sub>
+
&nbsp;&nbsp; &nbsp; &nbsp; = int<sub>-infinity</sub><sup>infinity</sup>&nbsp;( [u(W+pi) - u(W-pi)] [u(w-W+pi) - u(w-W-pi)] )dW<sup></sup><sub></sub><sub></sub>  
  
&nbsp;&nbsp; &nbsp; &nbsp; =&nbsp; int-<sub>pi</sub><sup>pi</sup>&nbsp;(u(w-W+pi) - u(w-W-pi)) dW
+
&nbsp;&nbsp; &nbsp; &nbsp; =&nbsp; int<sub>-</sub><sub>pi</sub><sup>pi</sup>&nbsp;(u(w-W+pi) - u(w-W-pi)) dW  
  
&nbsp;&nbsp; &nbsp; &nbsp; since &nbsp; &nbsp; &nbsp;W-pi &lt;= w &lt; pi-W, &nbsp; &nbsp; and &nbsp; &nbsp; -pi &lt;= W &lt; pi
+
&nbsp;&nbsp; &nbsp; &nbsp; since &nbsp; &nbsp; &nbsp;W-pi &lt;= w &lt; pi-W, &nbsp; &nbsp; and &nbsp; &nbsp; -pi &lt;= W &lt; pi  
  
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;-2pi &lt;= w &lt; 2pi
+
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;-2pi &lt;= w &lt; 2pi  
  
I'm not sure if I did the convolution right... help please (if you can read it)
+
I'm not sure if I did the convolution right... help please (if you can read it)  
  
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;int<sub>pi</sub><sup>-w-pi</sup>dW &nbsp; &nbsp; if -2pi &lt;= w &lt; 0
+
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;int<sub>pi</sub><sup>-w-pi</sup>dW &nbsp; &nbsp; if -2pi &lt;= w &lt; 0  
  
X(w) = { &nbsp; &nbsp; int<sub>w-pi</sub><sup>pi</sup>dW &nbsp; &nbsp; &nbsp;if &nbsp;0 &lt;= w &lt; 2pi
+
X(w) = { &nbsp; &nbsp; int<sub>w-pi</sub><sup>pi</sup>dW &nbsp; &nbsp; &nbsp;if &nbsp;0 &lt;= w &lt; 2pi  
  
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 0 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; else
+
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 0 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; else  
  
 +
<br>
  
 +
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; -w-2pi &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;if -2pi &lt;= w &lt; 0
  
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; -w-2pi &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;if -2pi &lt;= w &lt; 0
+
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;= { &nbsp; &nbsp; 2pi-w&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; if 0 &lt;= w &lt; 2pi
  
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;= { &nbsp; &nbsp; 2pi-w&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; if 0 &lt;= w &lt; 2pi
+
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 0 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; else
  
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 0 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; else
+
<br>
  
 +
Regardless, wm = 2pi so NR = 4pi
  
 
+
--[[User:Kellsper|Kellsper]] 22:36, 20 April 2011 (UTC)<br>  
Regardless, wm = 2pi so NR = 4pi
+
 
+
--[[User:Kellsper|Kellsper]] 22:36, 20 April 2011 (UTC)<br>
+
  
 
=== Answer 2  ===
 
=== Answer 2  ===

Latest revision as of 09:30, 11 November 2011

Practice Question on Nyquist rate

What is the Nyquist rate of the signal

$ x(t) = \frac{ \sin ( \pi t )}{\pi t} \frac{ \sin ( \pi t )}{\pi t} $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Use CTFT to find the frequency response

Using table, we know FT(sin(pi t)/(pi t)) --> u(w+W) - u(w-W)

X(w) = [u(w+pi) - u(w-pi)] * [u(w+pi) - u(w-pi)]

       = int-infinityinfinity ( [u(W+pi) - u(W-pi)] [u(w-W+pi) - u(w-W-pi)] )dW

       =  int-pipi (u(w-W+pi) - u(w-W-pi)) dW

       since      W-pi <= w < pi-W,     and     -pi <= W < pi

            -2pi <= w < 2pi

I'm not sure if I did the convolution right... help please (if you can read it)

                intpi-w-pidW     if -2pi <= w < 0

X(w) = {     intw-pipidW      if  0 <= w < 2pi

                 0                   else


                 -w-2pi            if -2pi <= w < 0

        = {     2pi-w             if 0 <= w < 2pi

                 0                   else


Regardless, wm = 2pi so NR = 4pi

--Kellsper 22:36, 20 April 2011 (UTC)

Answer 2

Write it here

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett