(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
----
 
----
= Practice Question on Computing the Fourier Transform of a Continuous-time Signal  =
+
= [[:Category:Problem_solving|Practice Question]] on Computing the Fourier Transform of a Continuous-time Signal  =
  
 
Compute the Fourier transform of the signal
 
Compute the Fourier transform of the signal
Line 34: Line 34:
 
<math>\mathfrak{F}\Bigg(\frac{1}{2}e^{j2\pi t}+\frac{1}{2}e^{-j2\pi t}\Bigg)=\frac{2\pi}{2}\delta(\omega-2\pi)+\frac{2\pi}{2}\delta(\omega+\pi)</math>
 
<math>\mathfrak{F}\Bigg(\frac{1}{2}e^{j2\pi t}+\frac{1}{2}e^{-j2\pi t}\Bigg)=\frac{2\pi}{2}\delta(\omega-2\pi)+\frac{2\pi}{2}\delta(\omega+\pi)</math>
  
Therefore <math class="inline">\mathcal X (\omega) =\pi\delta(\omega-2\pi)+\pi\delta(\omega+\pi)</math>
+
Therefore <math class="inline">\mathcal X (\omega) =\pi\delta(\omega-2\pi)+\pi\delta(\omega+2\pi)</math>
  
 
--[[User:Cmcmican|Cmcmican]] 17:38, 23 February 2011 (UTC)
 
--[[User:Cmcmican|Cmcmican]] 17:38, 23 February 2011 (UTC)

Latest revision as of 09:25, 11 November 2011


Practice Question on Computing the Fourier Transform of a Continuous-time Signal

Compute the Fourier transform of the signal

$ x(t) = \cos (2 \pi t )\ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Guess $ \chi(\omega)=2\pi\delta(\omega-2\pi k)\, $ such that $ \mathfrak{F}^{-1}=e^{jk2\pi t} $

check:

$ \mathfrak{F}(2\pi\delta(\omega-2\pi k))=\frac{1}{2\pi}\int_{-\infty}^\infty2\pi\delta(\omega-2\pi k)e^{j\omega t}d\omega=e^{jk2\pi t} $

Therefore,$ \chi(\omega)=2\pi\delta(\omega-2\pi k)\, $

--Cmcmican 20:47, 21 February 2011 (UTC)

Instructor's comments: Take a look at your answer: it depends on k. However, the input does not depend on k. By the way, you can use the "mathcal" font to produce the curly X. Like this: $ {\mathcal X} $. And if you use the inline class, it is aligned with the line like this: $ {\mathcal X} $. -pm


Answer 2

I'll try this again, using the formula for Fourier transform of a periodic signal.

$ \mathfrak{F}\Bigg(\frac{1}{2}e^{j2\pi t}+\frac{1}{2}e^{-j2\pi t}\Bigg)=\frac{2\pi}{2}\delta(\omega-2\pi)+\frac{2\pi}{2}\delta(\omega+\pi) $

Therefore $ \mathcal X (\omega) =\pi\delta(\omega-2\pi)+\pi\delta(\omega+2\pi) $

--Cmcmican 17:38, 23 February 2011 (UTC)

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang