m
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
= Practice Question on Computing the Fourier Series discrete-time signal  =
+
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 +
= [[:Category:Problem_solving|Practice Question]] on Computing the Fourier Series discrete-time signal  =
  
 
Obtain the Fourier series the DT signal  
 
Obtain the Fourier series the DT signal  
Line 24: Line 25:
 
Solution 1:
 
Solution 1:
 
   
 
   
1) ω<sub>o</sub> = <math>2*\pi/T = 2*pi/20=\pi/10</math>
+
1) <math>w_o = \frac{2\pi}{T} = 2\frac{\pi}{20}=\frac{\pi}{10}</math>
  
 
2) a<sub>o</sub> is the DC value of the AC signal and is therefore 1/2
 
2) a<sub>o</sub> is the DC value of the AC signal and is therefore 1/2
  
3) a<sub>k</sub> = <math> 1/20 * \int_a^b \! x(t)*e^{-j*k*(\pi/10)*t}\,dx </math> = <math>e^{j*k*\pi/2}-e^{-j*k*\pi/2}/(2*\pi*j*k) = sin(k*\pi/2)/(k*\pi)</math>([[User:Clarkjv|Clarkjv]] 18:25, 8 February 2011 (UTC))
+
3) <math>a_k= 1/20 * \int_{-5}^{5} \! x(t)*e^{-j*k*(\pi/10)*t}\,dx </math> = <math>e^{j*k*\pi/2}-e^{-j*k*\pi/2}/(2*\pi*j*k) = \frac{sin(k\pi/2)}{(k\pi)}</math>([[User:Clarkjv|Clarkjv]] 18:25, 8 February 2011 (UTC))
  
 
Solution 2:
 
Solution 2:
  
1)ω<sub>o</sub>=<math>\pi/10</math> (see solution 1)
+
1)<math>w_o=\frac{\pi}{10}</math> (see solution 1)
  
 
From example 3.5 (sec. 3.3 pg 193 Signals and Systems 2nd edition Oppenheim)
 
From example 3.5 (sec. 3.3 pg 193 Signals and Systems 2nd edition Oppenheim)
 +
where T_1 is half the pulse width,
 +
<math>a_k=\frac{sin(k * w_o * T_1)}{(k*\pi)}</math>,
  
<math>a_k=sin(k * w_o * T_1)/(k*\pi)</math>,
 
  
 
2)a<sub>o</sub> is still the DC value of the AC signal and therefore,  
 
2)a<sub>o</sub> is still the DC value of the AC signal and therefore,  
 
a<sub>o</sub> = 1/2
 
a<sub>o</sub> = 1/2
  
From <math>a_k=sin(k * w_o * T_1)/(k*\pi)</math>,
+
From <math>a_k=\frac{sin(k * w_o * T_1)}{(k*\pi)}</math>
  
3) a<sub>k</sub> = <math>sin(k*\pi/2)/(k*\pi)</math>([[User:Clarkjv|Clarkjv]] 18:25, 8 February 2011 (UTC))
+
3)<math>a_k=\frac{sin(k\pi/2)}{(k\pi)}</math>
 +
([[User:Clarkjv|Clarkjv]] 18:25, 8 February 2011 (UTC))
  
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
+
:<span style="color:red">TA's comment: The given signal is a DT signal and not a CT signal.</span>
 +
----
 +
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]

Latest revision as of 09:25, 11 November 2011

Practice Question on Computing the Fourier Series discrete-time signal

Obtain the Fourier series the DT signal

$ x[n] = \left\{ \begin{array}{ll} 1, & \text{ for } -5\leq n \leq 5,\\ 0, & \text{ for } 5< |n| \leq 10. \end{array} \right. \ $

x[n] periodic with period 20.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Solution 1:

1) $ w_o = \frac{2\pi}{T} = 2\frac{\pi}{20}=\frac{\pi}{10} $

2) ao is the DC value of the AC signal and is therefore 1/2

3) $ a_k= 1/20 * \int_{-5}^{5} \! x(t)*e^{-j*k*(\pi/10)*t}\,dx $ = $ e^{j*k*\pi/2}-e^{-j*k*\pi/2}/(2*\pi*j*k) = \frac{sin(k\pi/2)}{(k\pi)} $(Clarkjv 18:25, 8 February 2011 (UTC))

Solution 2:

1)$ w_o=\frac{\pi}{10} $ (see solution 1)

From example 3.5 (sec. 3.3 pg 193 Signals and Systems 2nd edition Oppenheim) where T_1 is half the pulse width, $ a_k=\frac{sin(k * w_o * T_1)}{(k*\pi)} $,


2)ao is still the DC value of the AC signal and therefore, ao = 1/2

From $ a_k=\frac{sin(k * w_o * T_1)}{(k*\pi)} $

3)$ a_k=\frac{sin(k\pi/2)}{(k\pi)} $ (Clarkjv 18:25, 8 February 2011 (UTC))

TA's comment: The given signal is a DT signal and not a CT signal.

Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett