Line 12: Line 12:
 
\end{align}</math>
 
\end{align}</math>
  
b)
+
b) Using Euler Formula, we have
 +
 
 +
<math>\begin{align}
 +
x[n] &= e^{\frac{j\pi n}{3}}(\frac{ e^{\frac{j\pi n}{6}} + e^{-\frac{j\pi n}{6}} }{2}) \\
 +
&= \frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{12}}
 +
\end{align}</math>
 +
 
 +
Observing that <math>x[n]</math> has fundamental period <math>N=12</math>. Using IDFT, we have
 +
 
 +
<math>\begin{align}
 +
x[n] &= \frac{1}{N}\sum_{n=0}^{N-1}e^{\frac{j2\pi nk}{N}} \\
 +
\frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{12}} &= \frac{1}{12}\sum_{n=0}^{11}e^{\frac{j2\pi nk}{12}}
 +
\end{align}</math>
 +
 
 +
For <math>k=0,1,...,N-1</math>
 +
 
 +
 
 
----
 
----
 
==Question 2==
 
==Question 2==

Revision as of 14:27, 13 October 2011

Homework 4, ECE438, Fall 2011, Prof. Boutin


Question 1

a) For $ k=0,1,...,N-1 $

$ \begin{align} X_N(k) &= \sum_{k=0}^{N-1}x[n]e^{-\frac{j2\pi nk}{N}} \\ &= x[0]e^{-\frac{j2\pi 0\cdot k}{N}} \\ &= 1 \end{align} $

b) Using Euler Formula, we have

$ \begin{align} x[n] &= e^{\frac{j\pi n}{3}}(\frac{ e^{\frac{j\pi n}{6}} + e^{-\frac{j\pi n}{6}} }{2}) \\ &= \frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{12}} \end{align} $

Observing that $ x[n] $ has fundamental period $ N=12 $. Using IDFT, we have

$ \begin{align} x[n] &= \frac{1}{N}\sum_{n=0}^{N-1}e^{\frac{j2\pi nk}{N}} \\ \frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{12}} &= \frac{1}{12}\sum_{n=0}^{11}e^{\frac{j2\pi nk}{12}} \end{align} $

For $ k=0,1,...,N-1 $



Question 2


Back to Homework 4

Back to ECE 438 Fall 2011

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett