Line 14: Line 14:
 
----
 
----
 
==Answer 1==
 
==Answer 1==
Write it here
+
<math>x[n]= e^{-j \frac{1}{5} \pi n}=cos(\frac{\pi n}{5})+jsin(\frac{\pi n}{5})</math>.
 +
 
 +
period=10, therefor, by comparing with<math>x[n]=e^{-j2\pi k_0 n/N}</math>. 
 +
 
 +
we get <math>N=10</math>,<math>k_0=1</math>.
 +
 
 +
From DFT transfer pair, <math>X[k]=10\delta[k-1]</math>. repeated with period 10.
 
----
 
----
 
==Answer 2==
 
==Answer 2==

Revision as of 07:15, 2 October 2011


Practice Problem

Compute the discrete Fourier transform of the discrete-time signal

$ x[n]= e^{-j \frac{1}{5} \pi n} $.

How does your answer related to the Fourier series coefficients of x[n]?

Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x[n]= e^{-j \frac{1}{5} \pi n}=cos(\frac{\pi n}{5})+jsin(\frac{\pi n}{5}) $.

period=10, therefor, by comparing with$ x[n]=e^{-j2\pi k_0 n/N} $.

we get $ N=10 $,$ k_0=1 $.

From DFT transfer pair, $ X[k]=10\delta[k-1] $. repeated with period 10.


Answer 2

Write it here


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang