Line 70: Line 70:
 
\end{align}</math>
 
\end{align}</math>
  
Replacing D with 5 would be the answer.
+
Replacing D with 3 would be the answer.
  
[[Image:3.jpg]]
+
[[Image:HW5Q2sol_3.jpg]]
  
 
<math>\text{b)} \;\; \text{General Relation for the upsampling with a factor of } L \,\!</math>.
 
<math>\text{b)} \;\; \text{General Relation for the upsampling with a factor of } L \,\!</math>.
Line 85: Line 85:
 
Since <math>X(w)</math> is periodic with <math>2\pi</math>, <math>Z(w)=X(Lw)</math> is periodic with <math>2\pi/L</math>.
 
Since <math>X(w)</math> is periodic with <math>2\pi</math>, <math>Z(w)=X(Lw)</math> is periodic with <math>2\pi/L</math>.
  
Replaing L with 7 would be the answer.
+
Replaing L with 4 would be the answer.
  
  
[[Image:4.jpg]]
+
[[Image:HW5Q2sol_4.jpg]]
  
 
----
 
----

Latest revision as of 03:56, 2 October 2011



Solution to Question 1 of HW5


$ x_r(t)= \sum_{k=-\infty}^\infty x(kT) \text{ sinc} \left(\frac{t-kT}{T}\right) $

Let m be any integer.

$ \begin{align} \text{a)} \;\; x_r(mT) & = \sum_{k=-\infty}^\infty x(kT) \text{ sinc} \left(\frac{mT-kT}{T}\right) = \sum_{k=-\infty}^\infty x(kT) \text{ sinc} \left((m-k)\right) \\ & = x(mT), \;\; \text{ since} \; \text{ sinc}\left( (m-k) \right) = \left\{ \begin{array}{ll} 1 & \text{ when } m=k \\ 0 & \text{ when } m \neq k \end{array} \right. \end{align} $

$ \begin{align} \text{b)} \;\; & \text{The above expression is equivalent to the following:} \\ & x_r(t) = \sum_{k=-\infty}^\infty x(kT) \delta(t-kT) \ast \text{ sinc} \left(\frac{t}{T}\right) \\ \end{align} $

This implies that the reconstructed signal $ x_r(t) $ is the output of a filter when we input the impulse train of $ x(t) $ with period $ T $.

The impulse response of this filter is $ \text{sinc}(t/T) $, whose frequency response is a ideal low-pass filter with the cut-off frequency of $ 1/(2T) $.

Thus the signal bandwidth $ B $ must be less than $ 1/(2T) $ for the perfect reconstruction.

But the sampling frequency for the impulse train was $ F_s=1/T $. Thus the sampling frequency must be larger than $ 2B $, in order to avoid aliasing when reconstruction.

Hence, when $ F_s>2B $, $ x_r(t)=x(t) $.


Solution to Question 2 of HW5


HW5Q2sol 1.jpg

$ \begin{align} \text{a)} \;\; & x_p(t)=x(t) \sum_{k=-\infty}^{\infty} \delta(t-kT) = \sum_{k=-\infty}^{\infty} x(kT) \delta(t-kT) \\ & h_0(t) = \text{rect}\left(\frac{t-\frac{T}{2}}{T}\right) \\ & x_0(t) = x_p(t) \ast h_0(t) = \sum_{k=-\infty}^{\infty} x(kT) \delta(t-kT) \ast \text{rect}\left(\frac{t-\frac{T}{2}}{T}\right) = \sum_{k=-\infty}^{\infty} x(kT) \text{rect}\left(\frac{t-(k+\frac{1}{2})T}{T}\right) \\ \end{align} $

$ \text{b)}\,\! $

HW5Q2sol 2.jpg

$ \text{c)} \;\; \text{There is no such condition and the impulse response of this LTI system is } h_0(t)\,\! $.

$ \text{d)} \;\; \text{False} \,\! $

Even though the signal is band-limited, sampling will incur the replicas at every multiples of sampling frequency $ 1/T $.

And the frequency response of zero-order hold is $ H_0(e^{jw})=T\text{ sinc}(wT/2)e^{-jwT/2} $, which is not like a low-pass filter.

Therefore, the frequency response of $ x_0(t) $ is not band-limited.


Solution to Question 3 of HW5


$ \text{a)} \;\; \text{General Relation for the decimation with a factor of } D \,\! $.

$ \text{Let } X(w) = \mathcal{F}(x[n]) $

$ \begin{align} Y(w) &= \sum_{n=-\infty}^{\infty} y[n]e^{-jwn} = \sum_{n=-\infty}^{\infty} x[3n]e^{-jwn} \\ &= \sum_{m=-\infty, m=Dk}^{\infty} x[m]e^{-j\frac{wm}{D}} = \sum_{m=-\infty}^{\infty} x[m] \left( \sum_{k=-\infty}^{\infty} \delta[m-Dk] \right) e^{-j\frac{wm}{D}} \\ &= \sum_{m=-\infty}^{\infty} x[m] \left( \frac{1}{D} \sum_{k=0}^{D-1} e^{j\frac{2\pi}{D}km} \right) e^{-j\frac{wm}{D}} = \sum_{k=0}^{D-1} \frac{1}{D} \sum_{m=-\infty}^{\infty} x[m]e^{j\left(w-\frac{2\pi}{D}k\right)m} \\ &= \sum_{k=0}^{D-1} \frac{1}{D} X\left(\frac{w-2\pi k}{D}\right) \\ \end{align} $

Replacing D with 3 would be the answer.

HW5Q2sol 3.jpg

$ \text{b)} \;\; \text{General Relation for the upsampling with a factor of } L \,\! $.

$ \begin{align} Z(w) &= \sum_{n=-\infty}^{\infty} z[n]e^{-jwn} \\ &= \sum_{n=-\infty}^{\infty} \left( \sum_{k=-\infty}^{\infty} x[k] \delta[n-kL] \right) e^{-jwn} \\ &= \sum_{k=-\infty}^{\infty} x[k] \sum_{n=-\infty}^{\infty} \delta[n-kL] e^{-jwn} = \sum_{k=-\infty}^{\infty} x[k] e^{-jwkL} \\ &= \sum_{k=-\infty}^{\infty} x[k] e^{-jLwk} = X(Lw) \\ &\end{align} $

Since $ X(w) $ is periodic with $ 2\pi $, $ Z(w)=X(Lw) $ is periodic with $ 2\pi/L $.

Replaing L with 4 would be the answer.


HW5Q2sol 4.jpg


Back to HW5

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett