Line 20: | Line 20: | ||
<math> | <math> | ||
= 1 + (-j) \cdot (-j)^k + (-1) \cdot (1)^k + (j) \cdot (j)^k | = 1 + (-j) \cdot (-j)^k + (-1) \cdot (1)^k + (j) \cdot (j)^k | ||
− | |||
− | |||
− | |||
− | |||
+ | = (-j)^{k+1} + (j)^{k+1} = 0, -2, 0, 2</math> | ||
+ | |||
+ | , when k = 0, 1 ,2 ,3. And it is periodic with K = 4. | ||
+ | |||
+ | Ouch... This is not right. since <math> x[n] = (-j)^n = e^{((-j\pi/2) \cdot n )}</math> | ||
+ | |||
+ | it's fft should be only an impulse. And Matlab told me: | ||
+ | |||
+ | x = [1 -j -1 j]; | ||
+ | |||
+ | fft(x) | ||
+ | |||
+ | ans = | ||
+ | |||
+ | 0 0 0 4 | ||
+ | |||
+ | I'll fix it tomorrow. Or someone can point out my error? | ||
---- | ---- |
Revision as of 15:38, 29 September 2011
Practice Problem
Compute the discrete Fourier transform of the discrete-time signal
$ x[n]= (-j)^n $.
How does your answer related to the Fourier series coefficients of x[n]?
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
$ X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j 2 \pi \frac{k}{N} n} = \sum_{n=0}^{3} (-j)^n \cdot e^{-j 2 \pi \frac{k}{4} n} = 1 + (-j \cdot e^{-j \frac{\pi k}{2}} ) + (-1 \cdot e^{-j \frac{2\pi k}{2}} ) + (j \cdot e^{-j \frac{3\pi k}{2}} ) $
$ = 1 + (-j) \cdot (-j)^k + (-1) \cdot (1)^k + (j) \cdot (j)^k = (-j)^{k+1} + (j)^{k+1} = 0, -2, 0, 2 $
, when k = 0, 1 ,2 ,3. And it is periodic with K = 4.
Ouch... This is not right. since $ x[n] = (-j)^n = e^{((-j\pi/2) \cdot n )} $
it's fft should be only an impulse. And Matlab told me:
x = [1 -j -1 j];
fft(x)
ans =
0 0 0 4
I'll fix it tomorrow. Or someone can point out my error?
Answer 2
Write it here