Line 14: Line 14:
 
----
 
----
 
==Answer 1==
 
==Answer 1==
Write it here
+
<math>X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j 2 \pi \frac{k}{N} n} =  \sum_{n=0}^{3} (-j)^n \cdot e^{-j 2 \pi \frac{k}{4} n}
 +
 
 +
= 1 + (-j \cdot e^{-j \frac{\pi k}{2}} ) + (-1 \cdot e^{-j \frac{2\pi k}{2}} ) + (j \cdot e^{-j \frac{3\pi k}{2}} )</math>
 +
 
 +
<math>
 +
= 1 + (-j) \cdot (-j)^k + (-1) \cdot (1)^k + (j) \cdot (j)^k
 +
</math>
 +
<math>
 +
= (-j)^{k+1} + (j)^{k+1}
 +
</math>
 +
 
 +
 
 
----
 
----
 
==Answer 2==
 
==Answer 2==

Revision as of 15:28, 29 September 2011


Practice Problem

Compute the discrete Fourier transform of the discrete-time signal

$ x[n]= (-j)^n $.

How does your answer related to the Fourier series coefficients of x[n]?

Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j 2 \pi \frac{k}{N} n} = \sum_{n=0}^{3} (-j)^n \cdot e^{-j 2 \pi \frac{k}{4} n} = 1 + (-j \cdot e^{-j \frac{\pi k}{2}} ) + (-1 \cdot e^{-j \frac{2\pi k}{2}} ) + (j \cdot e^{-j \frac{3\pi k}{2}} ) $

$ = 1 + (-j) \cdot (-j)^k + (-1) \cdot (1)^k + (j) \cdot (j)^k $ $ = (-j)^{k+1} + (j)^{k+1} $



Answer 2

Write it here


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang