Line 6: Line 6:
 
<math>A= \frac {1}{2 \pi i} \int_{C_1} (z-A)^{-1}z dz + \frac{1}{2 \pi i} \int_{C_2} (z-A)^{-1}z dz = A_1 + A_2</math>   
 
<math>A= \frac {1}{2 \pi i} \int_{C_1} (z-A)^{-1}z dz + \frac{1}{2 \pi i} \int_{C_2} (z-A)^{-1}z dz = A_1 + A_2</math>   
  
Now it is not to hard to show that <math>X=X_1 \oplus X_2 </math> with <math>A_j:X_j \arrow X_j</math>
+
Now it is not to hard to show that <math>X=X_1 \oplus X_2 </math> with <math>A_j:X_j \to X_j</math>

Latest revision as of 14:20, 23 September 2008

Let X is a Banach space, and $ A\in B(X) $. Suppose also that $ \sigma (A) = F_1\cup F_2 $ with F's disjoint components.

Then we can let $ G_1 G_2 $ be disjoint nbhds of F_j's respectively, and consider $ C_1 C_2 $ closed curves in G_i and surrounding F_1 respectively. Then we have


$ A= \frac {1}{2 \pi i} \int_{C_1} (z-A)^{-1}z dz + \frac{1}{2 \pi i} \int_{C_2} (z-A)^{-1}z dz = A_1 + A_2 $

Now it is not to hard to show that $ X=X_1 \oplus X_2 $ with $ A_j:X_j \to X_j $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal