Line 98: Line 98:
 
==Question 2==
 
==Question 2==
  
(1) <math>x[n]=a^{n+1}u[n-1],\ a>0</math>
+
<math>(1)\ x[n]=a^{n+1}u[n-1],\ a>0</math>
  
 
Compute Z transform
 
Compute Z transform
Line 116: Line 116:
  
 
<math>\begin{align}
 
<math>\begin{align}
X(z) &= a^2 z^{-1}\sum_{n=0}^{\infty} a^n z^{-n} \\
+
X(z) &= a^2 z^{-1}\sum_{n=0}^{\infty} a^n z^{-n},\ |z|>a \\
 
&= a\sum_{n=0}^{\infty} a^{n+1}z^{-n-1}  
 
&= a\sum_{n=0}^{\infty} a^{n+1}z^{-n-1}  
 
\end{align}</math>
 
\end{align}</math>
Line 130: Line 130:
 
x[n] &= a^{n+1} u[n-1]
 
x[n] &= a^{n+1} u[n-1]
 
\end{align}</math>
 
\end{align}</math>
 +
 +
----
 +
 +
<math>(2)\ x[n]=-a^{n}u[-n-1],\ a>0</math>
 +
 +
Compute Z transform
 +
 +
<math>\begin{align}
 +
X(z) &= \sum_{n=-\infty}^{\infty} x[n]z^{-n} \\
 +
&= -\sum_{n=-\infty}^{\infty} a^{n} u[-n-1]z^{-n} \\
 +
&= -\sum_{n=-\infty}^{-1} a^{n}z^{-n} \\
 +
\end{align}</math>
 +
 +
Substitute m=-n
 +
 +
<math>\begin{align}
 +
X(z) &= -\sum_{n=1}^{\infty} a^{-n}z^{n} \\
 +
&= -\frac{a^{-1}z}{1-a^{-1}z} \\
 +
&= \frac{1}{1-az^{-1}}
 +
\end{align}</math>
 +
 +
with ROC: <math>|z|<a</math>
 +
 +
Compute Inverse Z transform
 +
 +
<math>\begin{align}
 +
X(z) &= \frac{1}{1-az^{-1}} \\
 +
&= \frac{a^{-1}z}{a^{-1}z-1} \\
 +
&= -a^{-1}z\frac{1}{1-a^{-1}z} 
 +
\end{align}</math>
 +
 +
The power series expansion of the given function is
 +
 +
<math>\begin{align}
 +
X(z) &= -a^{-1}z\sum_{n=0}^{\infty} a^{-n}z^{n} \\
 +
&= -\sum_{n=0}^{\infty} a^{-n-1}z^{n+1} \\
 +
\end{align}</math>
 +
 +
Substitute n+1=-m
 +
 +
<math>\begin{align}
 +
X(z) &= -\sum_{m=-1}^{-\infty} a^{m}z^{-m} \\
 +
&= -\sum_{m=-\infty}^{\infty} a^{m}u[-m-1]z^{-m},\ \text{and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}
 +
\end{align}</math>
 +
 +
<math>\ x[n]=-a^{n}u[-n-1],\ a>0</math>
 +
 
----
 
----
 
[[Hw2_ECE438F11|Back to Homework2]]
 
[[Hw2_ECE438F11|Back to Homework2]]
  
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438, Fall 2011, Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438, Fall 2011, Prof. Boutin]]

Revision as of 16:39, 13 September 2011

Homework 2, ECE438, Fall 2011, Prof. Boutin


Question 1

Pick a note frequency f0 = 392Hz

x(t) = 'cos'(2πf0t) = 'cos'(2π * 392t)
$ a.\ Assign\ sampling\ period\ T_1=\frac{1}{1000} $
$ 2f_0<\frac{1}{T_1}, \ No\ aliasing\ occurs. $

$ \begin{align} x_1(n) &=x(nT_1)=cos(2\pi *392nT_1)=cos(2\pi *\frac{392}{1000}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{1000}n} + e^{j2\pi *\frac{392}{1000}n} \right) \\ \end{align} $

$ 0<2\pi *\frac{392}{1000}<\pi $
$ -\pi<-2\pi *\frac{392}{1000}<0 $

$ \begin{align} \mathcal{X}_1(\omega) &=2\pi *\frac{1}{2} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ &=\pi \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ \end{align} $

Xw1 singleperiod.jpg

$ for\ all\ \omega $
$ \mathcal{X}_1(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] $

Xw1 multiperiod.jpg

In this situation, no aliasing occurs. In the interval of [ − π,π], which represents one period, the frequcy spectrum remains the same as Fig a-1.
$ b.\ Assign\ sampling\ period\ T_2=\frac{1}{500} $
$ 2f_0>\frac{1}{T_2}, \ Aliasing\ occurs. $

$ \begin{align} x_2(n) &=x(nT_2)=cos(2\pi *392nT_2)=cos(2\pi *\frac{392}{500}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{500}n} + e^{j2\pi *\frac{392}{500}n} \right) \\ \end{align} $

$ \pi<2\pi *\frac{392}{500}<2\pi $
$ -2\pi<-2\pi *\frac{392}{500}<\pi $
$ \mathcal{X}_2(\omega)=\pi \left[\delta (\omega -2\pi *\frac{392}{500}) + \delta (\omega + 2\pi *\frac{392}{500})\right] $
$ X_2(f)=\frac{1}{2}\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $

Xw2 singleperiod.jpg

$ for\ all\ \omega $
$ \mathcal{X}_2(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{500}) + \delta (\omega + 2\pi *\frac{392}{500})\right] $
$ X_2(f)=\frac{1}{2}rep_2\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $

Xw2 multiperiod.jpg

In this situation, aliasing DO occurs. In the interval of [ − π,π], which represents one period, the frequcy spectrum is different from Fig b-1.

Xf2 multiperiod.jpg


Question 2

$ (1)\ x[n]=a^{n+1}u[n-1],\ a>0 $

Compute Z transform

$ \begin{align} X(z) &= \sum_{n=-\infty}^{\infty} x[n]z^{-n} \\ &= \sum_{n=-\infty}^{\infty} a^{n+1} u[n-1]z^{-n} \\ &= a\sum_{n=1}^{\infty} a^{n}z^{-n} \\ &= \frac{a^2z^{-1}}{1-az^{-1}} \end{align} $

with ROC: $ |z|>a $

Compute Inverse Z transform

The power series expansion of the given function is

$ \begin{align} X(z) &= a^2 z^{-1}\sum_{n=0}^{\infty} a^n z^{-n},\ |z|>a \\ &= a\sum_{n=0}^{\infty} a^{n+1}z^{-n-1} \end{align} $

Substitute n=m-1

$ \begin{align} X(z) &= a\sum_{m=1}^{\infty} a^{m}z^{-m} \\ &= \sum_{m=-\infty}^{\infty} a^{m+1}u[m-1]z^{-m},\ \text{and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \end{align} $

$ \begin{align} x[n] &= a^{n+1} u[n-1] \end{align} $


$ (2)\ x[n]=-a^{n}u[-n-1],\ a>0 $

Compute Z transform

$ \begin{align} X(z) &= \sum_{n=-\infty}^{\infty} x[n]z^{-n} \\ &= -\sum_{n=-\infty}^{\infty} a^{n} u[-n-1]z^{-n} \\ &= -\sum_{n=-\infty}^{-1} a^{n}z^{-n} \\ \end{align} $

Substitute m=-n

$ \begin{align} X(z) &= -\sum_{n=1}^{\infty} a^{-n}z^{n} \\ &= -\frac{a^{-1}z}{1-a^{-1}z} \\ &= \frac{1}{1-az^{-1}} \end{align} $

with ROC: $ |z|<a $

Compute Inverse Z transform

$ \begin{align} X(z) &= \frac{1}{1-az^{-1}} \\ &= \frac{a^{-1}z}{a^{-1}z-1} \\ &= -a^{-1}z\frac{1}{1-a^{-1}z} \end{align} $

The power series expansion of the given function is

$ \begin{align} X(z) &= -a^{-1}z\sum_{n=0}^{\infty} a^{-n}z^{n} \\ &= -\sum_{n=0}^{\infty} a^{-n-1}z^{n+1} \\ \end{align} $

Substitute n+1=-m

$ \begin{align} X(z) &= -\sum_{m=-1}^{-\infty} a^{m}z^{-m} \\ &= -\sum_{m=-\infty}^{\infty} a^{m}u[-m-1]z^{-m},\ \text{and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \end{align} $

$ \ x[n]=-a^{n}u[-n-1],\ a>0 $


Back to Homework2

Back to ECE438, Fall 2011, Prof. Boutin

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett