Line 5: Line 5:
 
==Question 1==
 
==Question 1==
  
Pick a note frequency <span class="texhtml">''f''<sub>0</sub> = 392''H''''z''</span>  
+
Pick a note frequency <span class="texhtml">''f''<sub>0</sub> = 392''H'''z''</span>  
  
 
{|
 
{|
 
|-
 
|-
| <span class="texhtml">''x''(''t'') = ''c''''o''''s''(2π''f''<sub>0</sub>''t'') = ''c''''o''''s''(2π * 392''t'')</span>
+
| <span class="texhtml">''x''(''t'') = 'c''o''s'(2π''f''<sub>0</sub>''t'') = 'c''o''s'(2π * 392''t'')</span>
 
|-
 
|-
 
| <math>a.\ Assign\ sampling\ period\ T_1=\frac{1}{1000}</math>
 
| <math>a.\ Assign\ sampling\ period\ T_1=\frac{1}{1000}</math>
Line 99: Line 99:
  
 
(1) <math>x[n]=a^{n+1}u[n-1],\ a>0</math>
 
(1) <math>x[n]=a^{n+1}u[n-1],\ a>0</math>
 +
 +
Compute Z transform
  
 
<math>\begin{align}
 
<math>\begin{align}
Line 107: Line 109:
 
\end{align}</math>
 
\end{align}</math>
  
 +
with ROC: <math>|z|>a</math>
 +
 +
Compute Inverse Z transform
 +
 +
The power series expansion of the given function is
 +
 +
<math>\begin{align}
 +
X(z) &= a^2 z^{-1}\sum_{n=0}^{\infty} a^n z^{-n} \\
 +
&= a\sum_{n=0}^{\infty} a^{n+1}z^{-n-1}
 +
\end{align}</math>
 +
 +
Substitute n=m-1
 +
 +
<math>\begin{align}
 +
X(z) &= a\sum_{m=1}^{\infty} a^{m}z^{-m} \\
 +
&= \sum_{m=-\infty}^{\infty} a^{m+1}u[m-1]z^{-m},\ \text{and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}
 +
\end{align}</math>
 +
 +
<math>\begin{align}
 +
x[n] &= a^{n+1} u[n-1]
 +
\end{align}</math>
 
----
 
----
 
[[Hw2_ECE438F11|Back to Homework2]]
 
[[Hw2_ECE438F11|Back to Homework2]]
  
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438, Fall 2011, Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438, Fall 2011, Prof. Boutin]]

Revision as of 15:55, 13 September 2011

Homework 2, ECE438, Fall 2011, Prof. Boutin


Question 1

Pick a note frequency f0 = 392Hz

x(t) = 'cos'(2πf0t) = 'cos'(2π * 392t)
$ a.\ Assign\ sampling\ period\ T_1=\frac{1}{1000} $
$ 2f_0<\frac{1}{T_1}, \ No\ aliasing\ occurs. $

$ \begin{align} x_1(n) &=x(nT_1)=cos(2\pi *392nT_1)=cos(2\pi *\frac{392}{1000}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{1000}n} + e^{j2\pi *\frac{392}{1000}n} \right) \\ \end{align} $

$ 0<2\pi *\frac{392}{1000}<\pi $
$ -\pi<-2\pi *\frac{392}{1000}<0 $

$ \begin{align} \mathcal{X}_1(\omega) &=2\pi *\frac{1}{2} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ &=\pi \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ \end{align} $

Xw1 singleperiod.jpg

$ for\ all\ \omega $
$ \mathcal{X}_1(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] $

Xw1 multiperiod.jpg

In this situation, no aliasing occurs. In the interval of [ − π,π], which represents one period, the frequcy spectrum remains the same as Fig a-1.
$ b.\ Assign\ sampling\ period\ T_2=\frac{1}{500} $
$ 2f_0>\frac{1}{T_2}, \ Aliasing\ occurs. $

$ \begin{align} x_2(n) &=x(nT_2)=cos(2\pi *392nT_2)=cos(2\pi *\frac{392}{500}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{500}n} + e^{j2\pi *\frac{392}{500}n} \right) \\ \end{align} $

$ \pi<2\pi *\frac{392}{500}<2\pi $
$ -2\pi<-2\pi *\frac{392}{500}<\pi $
$ \mathcal{X}_2(\omega)=\pi \left[\delta (\omega -2\pi *\frac{392}{500}) + \delta (\omega + 2\pi *\frac{392}{500})\right] $
$ X_2(f)=\frac{1}{2}\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $

Xw2 singleperiod.jpg

$ for\ all\ \omega $
$ \mathcal{X}_2(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{500}) + \delta (\omega + 2\pi *\frac{392}{500})\right] $
$ X_2(f)=\frac{1}{2}rep_2\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $

Xw2 multiperiod.jpg

In this situation, aliasing DO occurs. In the interval of [ − π,π], which represents one period, the frequcy spectrum is different from Fig b-1.

Xf2 multiperiod.jpg


Question 2

(1) $ x[n]=a^{n+1}u[n-1],\ a>0 $

Compute Z transform

$ \begin{align} X(z) &= \sum_{n=-\infty}^{\infty} x[n]z^{-n} \\ &= \sum_{n=-\infty}^{\infty} a^{n+1} u[n-1]z^{-n} \\ &= a\sum_{n=1}^{\infty} a^{n}z^{-n} \\ &= \frac{a^2z^{-1}}{1-az^{-1}} \end{align} $

with ROC: $ |z|>a $

Compute Inverse Z transform

The power series expansion of the given function is

$ \begin{align} X(z) &= a^2 z^{-1}\sum_{n=0}^{\infty} a^n z^{-n} \\ &= a\sum_{n=0}^{\infty} a^{n+1}z^{-n-1} \end{align} $

Substitute n=m-1

$ \begin{align} X(z) &= a\sum_{m=1}^{\infty} a^{m}z^{-m} \\ &= \sum_{m=-\infty}^{\infty} a^{m+1}u[m-1]z^{-m},\ \text{and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \end{align} $

$ \begin{align} x[n] &= a^{n+1} u[n-1] \end{align} $


Back to Homework2

Back to ECE438, Fall 2011, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang