Line 175: Line 175:
 
&=1+e^{-j\omega}+e^{-2j\omega} +e^{-3j\omega}
 
&=1+e^{-j\omega}+e^{-2j\omega} +e^{-3j\omega}
 
\end{align}</math>
 
\end{align}</math>
 
+
<span style="color:red">TA's comments: The item <math>e^{-3j\omega}</math> is redundant because u[n]-u[n-3] has only three items that are non-zero. Be careful.</span>
 
===Answer 11===
 
===Answer 11===
 
<math>  
 
<math>  

Revision as of 05:29, 12 September 2011

Discrete-time Fourier transform computation

Compute the discrete-time Fourier transform of the following signal:

$ x[n]= u[n]-u[n-3] $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(u[n]-u[n-3])e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(\delta [n]+\delta [n-1]+\delta[n-2])e^{-j\omega n} $

$ =\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j\omega n}+\delta [n-1]e^{-j\omega n}+\delta[n-2]e^{-j\omega n}]) $

$ =\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j0\omega}+\delta [n-1]e^{-j\omega}+\delta[n-2]e^{-j2\omega}]) $

$ =e^{-j0\omega}\sum_{n=-\infty}^{\infty}\delta [n]+e^{-j\omega}\sum_{n=-\infty}^{\infty}\delta [n-1]+e^{-j2\omega}\sum_{n=-\infty}^{\infty}\delta [n-2] $

$ =1+e^{-j\omega}+e^{-j2\omega} $

Instructor's comments: This is a bit long. Could you shorten your solution somehow? -pm

Answer 2

$ \mathcal{X}(\omega) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} (u[n] - u[n-3]) e^{-j\omega n} $

$ = \sum_{n=-\infty}^{\infty} u[n]e^{-j\omega n} - \sum_{n=-\infty}^{\infty}u[n-3]e^{-j\omega n} = \sum_{n=0}^{\infty}e^{-j\omega n} - \sum_{n=3}^{\infty}e^{-j\omega n} $

Let l = n-3

$ = \frac{1}{1-e^{-j\omega}} - \sum_{l=0}^{\infty}e^{-j\omega l}e^{-j\omega 3} = \frac{1}{1-e^{-j\omega}} - e^{-j\omega 3} \sum_{l=0}^{\infty}(e^{-j\omega})^{l} $

$ = \frac{1}{1-e^{-j\omega}} - e^{-j\omega 3}\frac{1}{1-e^{-j\omega}} $

Answer 3

$ \mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(u[n]-u[n-3])e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(\delta [n]+\delta [n-1]+\delta[n-2])e^{-j\omega n} $

$ =\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j\omega n}+\delta [n-1]e^{-j\omega n}+\delta[n-2]e^{-j\omega n}]) $

$ =\delta [0]e^{-j0\omega}+\delta [1]e^{-j\omega}+\delta[2]e^{-j2\omega} $


$ =1+e^{-j\omega}+e^{-j2\omega} $

so

Answer 4

$ x[n] = u[n]-u[n-3] = \delta [n] + \delta [n-1] + \delta [n-2]; $

by Fourier's linearity,

$ \mathcal{X}(\omega)=\mathcal{F}(x[n])= \mathcal{F}(\delta [n]) + \mathcal{F}(\delta [n-1]) + \mathcal{F}(\delta [n-2]); $

from the table Discrete-time Fourier Transform Pairs and Properties

$ \mathcal{F}(\delta[n])= 1; $

$ \mathcal{F}(\delta[n-n0])= e^{-j\omega n0}; $

So one can conclude that

$ \mathcal{F}(x[n])= 1 + e^{-j\omega} + e^{-2j\omega}; $

Prove the properties and pairs if needed.

Answer 4

$ \mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}=\sum_{n=-\infty}^{\infty}(u[n]-u[n-3])e^{-j\omega n} $ $ =\delta(0)e^{-j\omega 0}+\delta(1-1)e^{-j\omega 1}+\delta(2-2)e^{-j\omega 2}=1+e^{-j\omega}+e^{-j2\omega} $


Answer 5

$ \begin{align} x[n] = u[n]-u[n-3] = \delta [n]+\delta [n-1]+\delta[n-2]\end{align} $

$ \begin{align} \mathcal{F}(x[n]) =\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j\omega n}+\delta [n-1]e^{-j\omega n}+\delta[n-2]e^{-j\omega n}]) \\=\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j0\omega}+\delta [n-1]e^{-j\omega}+\delta[n-2]e^{-j2\omega}]) \\=1*\delta [n]+e^{-j\omega}\delta [n-1]+e^{-j2\omega}\delta [n-2] \\=1+e^{-j\omega}+e^{-j2\omega} \end{align} $

Answer 6

$ x[n]= u[n]-u[n-3] $

can be written as

$ x[n] = \delta[n] + \delta [n-1] + \delta[n-2] $.

The first term fourier transforms to $ e^{j\omega 0} = 1 $ and the other terms are delayed versions of the first term.

Thus the complete fourier transform comes out to be

$ =1+e^{-j\omega}+e^{-j2\omega} $

Answer 7

$ \begin{align} \mathcal{X}(\omega) &=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\\ &=\sum_{n=-\infty}^{\infty}u[n]-u[n-3]e^{-j\omega n}\\ &=\sum_{n=0}^{2}e^{-j\omega n}\\ &=1+e^{-j\omega}+e^{-j2\omega} \end{align} $

Answer 8

In discrete time, u[n] - u[n-3] is the same as

$ \delta [n] + \delta [n-1] + \delta [n-2] $

By the linearity property of Fourier Transforms, we can transform each term individually. The FT of x[n] is then:

$ \mathcal{X}(\omega) = 1+e^{-j\omega}+e^{-j\omega 2} $


Answer 9

$ \begin{align} \mathcal{X}(\omega) &=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\\ &=\sum_{n=-\infty}^{\infty}(u[n]-u[n-3])e^{-j\omega n}\\ &=\sum_{n=0}^{2}e^{-j\omega n}\\ &=1+e^{-j\omega}+e^{-2j\omega } \end{align} $

Answer 10

$ \begin{align} \mathcal{X}(\omega) &=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\\ &=\sum_{n=-\infty}^{\infty}(u[n]-u[n-3])e^{-j\omega n}\\ &=\sum_{n=0}^{3}e^{-j\omega n}\\ &=1+e^{-j\omega}+e^{-2j\omega} +e^{-3j\omega} \end{align} $ TA's comments: The item $ e^{-3j\omega} $ is redundant because u[n]-u[n-3] has only three items that are non-zero. Be careful.

Answer 11

$ \begin{align} \mathcal{X}(\omega) &=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\\ &=\sum_{n=-\infty}^{\infty}(u[n]-u[n-3])e^{-j\omega n}\\ &=\sum_{n=0}^{2}e^{-j\omega n}\\ &=1+e^{-j\omega}+e^{-2j\omega } \end{align} $


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett