Line 48: Line 48:
  
 
===Answer 3===
 
===Answer 3===
First two axiom need to be prove:
+
First the axiom need to be prove:
 
+
<math>Z(\delta [n]) = \sum_{n=-\infty}^{\infty}\delta[n]z^{-n} = \sum_{n=-\infty}^{\infty}\delta[n]z^{0} = z^0 = 1, ROC = C </math>
+
  
 
<math>Z(\delta [n- n_0]) = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n} = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n_0} = z^{-n_0}, ROC = C/[0] </math>
 
<math>Z(\delta [n- n_0]) = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n} = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n_0} = z^{-n_0}, ROC = C/[0] </math>
Line 60: Line 58:
 
so by two axioms proved above, with the linearity property,
 
so by two axioms proved above, with the linearity property,
  
<math>X(z) = Z\left( x[n] \right) =Z\left( 0\delta[n] + 1\delta[n-1] + 2\delta[n-2]\right) = Z\left( 0\delta[n]\right) + Z\left( 1\delta[n-1]\right) + Z\left( 2\delta[n-2]\right) = z^{-1} + 2z^{-2}  
+
<math>X(z) = Z\left( x[n] \right) =Z\left( 1\delta[n-1] + 2\delta[n-2]\right) = Z\left( 1\delta[n-1]\right) + Z\left( 2\delta[n-2]\right) = z^{-1} + 2z^{-2} ,ROC = C/[0]
 
</math>
 
</math>
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Revision as of 09:02, 10 September 2011

Z-transform computation

Compute the compute the z-transform (including the ROC) of the following DT signal:

$ x[n]= n u[n]-n u[n-3] $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Begin with the definition of a Z-Transform.

$ X(z) = \sum_{n=-\infty}^{\infty}(n u[n]-n u[n-3])z^{-n} $

Simplify a little. (pull out the n and realize $ u[n]-u[n-3] $ is only non-zero for 0, 1, and 2.)

$ X(z) = \sum_{n=0}^{2}n z^{-n} $

Then we have a simple case of evaluating for 3 points.

$ \begin{align} X(z) &= 0 z^{-0} + 1 z^{-1} + 2 z^{-2} \\ &= \frac{z+2}{z^2} \end{align} $

Answer 2

$ Z(x[n])= \sum_{n=-\infty}^{\infty}x[n]z^{-n}= \sum_{n=-\infty}^{\infty}n(u[n]- u[n-3])z^{-n} $

when n=0,1,2, x[n] is n; otherwise x[n]=0. So:

$ x(z)=0z^{-0}+1z^{-1}+2z^{-2}=\frac{1}{z}+\frac{2}{z^2} $ with ROC=all finite complex number.

test for infinity:

$ X(\frac{1}{z})=z+z^2 $

when z=0,$ X(\frac{1}{z}) $converges

X(z) converges at $ z=\infty $

so ROC of X(z) is all complex number.


Answer 3

First the axiom need to be prove:

$ Z(\delta [n- n_0]) = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n} = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n_0} = z^{-n_0}, ROC = C/[0] $

Observe the original function

$ x\left[ n \right]= n u[n]-n u[n-3] = n(u[n] - u[n-3]) = n(\delta[n] + \delta[n-1] + \delta[n-2]) = 0\delta[n] + 1\delta[n-1] + 2\delta[n-2] $

so by two axioms proved above, with the linearity property,

$ X(z) = Z\left( x[n] \right) =Z\left( 1\delta[n-1] + 2\delta[n-2]\right) = Z\left( 1\delta[n-1]\right) + Z\left( 2\delta[n-2]\right) = z^{-1} + 2z^{-2} ,ROC = C/[0] $


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman