(New page: Category:ECE301 Category:ECE438 Category:ECE438Fall2011Boutin Category:problem solving = Properties of the Z-transform = Prove the following scaling property of the z-trans...)
 
Line 13: Line 13:
 
----
 
----
 
===Answer 1===
 
===Answer 1===
Write it here.
+
I think there is a mistake, it should be <math>z_0^n</math> instead of <math>z_0^2</math>.
 +
 
 +
proof:
 +
 
 +
<math>x'[n]=z_0^n x[n]</math>
 +
 
 +
<math>Z[x'[n]]=\sum_{n=-\infty}^{\infty}x'[n]z^{-n}=\sum_{n=-\infty}^{\infty}z_0^n x[n]z^{-n}=\sum_{n=-\infty}^{\infty}x[n](\frac{z}{z_0})^{-n}</math>
 +
 
 +
<math>let k=\frac{z}{z_0}</math>
 +
 
 +
<math>Z[z_0^n x[n]]=\sum_{n=-\infty}^{\infty}x[n]k^{-n}=X(k)=X(\frac{z}{z_0})</math>
 +
 
 
=== Answer 2===
 
=== Answer 2===
 
Write it here.
 
Write it here.

Revision as of 08:09, 10 September 2011

Properties of the Z-transform

Prove the following scaling property of the z-transform:

$ z_0^2 x[n] \rightarrow X \left( \frac{z}{z_0}\right) $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

I think there is a mistake, it should be $ z_0^n $ instead of $ z_0^2 $.

proof:

$ x'[n]=z_0^n x[n] $

$ Z[x'[n]]=\sum_{n=-\infty}^{\infty}x'[n]z^{-n}=\sum_{n=-\infty}^{\infty}z_0^n x[n]z^{-n}=\sum_{n=-\infty}^{\infty}x[n](\frac{z}{z_0})^{-n} $

$ let k=\frac{z}{z_0} $

$ Z[z_0^n x[n]]=\sum_{n=-\infty}^{\infty}x[n]k^{-n}=X(k)=X(\frac{z}{z_0}) $

Answer 2

Write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett