Line 38: | Line 38: | ||
===Answer 3=== | ===Answer 3=== | ||
− | + | ||
+ | <math>x(t)=e^{j2\pi 1/2t}=e^{j\omega_0 t},where \omega=1/2. | ||
+ | F(e^{j\omega_0 t})=2\pi \delta(\omega-\omega_0) | ||
+ | so, X(f)=\delta (f-\frac{1}{2})</math> | ||
+ | |||
---- | ---- | ||
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]] | [[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]] |
Revision as of 16:24, 6 September 2011
Contents
Continuous-time Fourier transform of a complex exponential
What is the Fourier transform of $ x(t)= e^{j \pi t} $? Justify your answer.
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
Guess: $ X(f)=\delta (f-\frac{1}{2}) $
Proof:
$ x(t)=\int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df = \int_{-\infty}^{\infty} \delta (f-\frac{1}{2})e^{j2\pi ft} df = \int_{-\infty}^{\infty} \delta (f-\frac{1}{2})e^{j\pi t} df = e^{j\pi t} \int_{-\infty}^{\infty} \delta (f-\frac{1}{2}) df = e^{j\pi t} $
using the fact that $ \delta (t-T)f(t) = \delta (t-T)f(T) $
- Instructor's comments: Nice and clear solution! One can also justify the answer using the shifting property directly, which would save a couple of steps.-pm
Answer 2
$ x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df $
In order for the following to be true, $ x(t)= e^{j \pi t} $
$ X(f) = \delta(f - \frac{1}{2}) $
because
$ x(t) = \int_{-\infty}^{\infty} \delta(f - \frac{1}{2})e^{j2\pi ft} df = e^{j \pi t} $ with careful inspection.
Answer 3
$ x(t)=e^{j2\pi 1/2t}=e^{j\omega_0 t},where \omega=1/2. F(e^{j\omega_0 t})=2\pi \delta(\omega-\omega_0) so, X(f)=\delta (f-\frac{1}{2}) $