Line 29: Line 29:
  
 
===Answer 4===
 
===Answer 4===
use finite geometric series formula <math>S=\frac{a_1(1-r^n)}{1-r};a1=3,r=3(1+j),n=47,then S=-4037-j2692</math>     
+
use finite geometric series formula <math>S=\frac{a_1(1-r^n)}{1-r};a1=3,r=(3+3j)^(-42),n=47,then S=-4037-j2692</math>     
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Revision as of 14:49, 6 September 2011

Simplify this summation

$ \sum_{n=-42}^5 3^{n+1} (1+j)^n  $

Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

TA's comments: Any complex number can be written as one single complex exponential. i.e. $ a+jb=\sqrt{a^2+b^2}e^{j\theta}, where\ tan\theta = \frac{b}{a} $

Answer 2

Set $ x=3+j3 $. Note that $ |x|>1 $.

$ \sum_{n=-42}^5 3^{n+1} (1+j)^n = 3\sum_{n=-42}^5 x^n = 3\sum_{n=-5}^{42}x^{-n} = 3\sum_{n=-5}^{42}(\frac{1}{x})^n  $
$  = 3(\sum_{n=-5}^{\infty}(\frac{1}{x})^n - \sum_{n=43}^{\infty}(\frac{1}{x})^n) = 3(\frac{(\frac{1}{x})^{-5}}{1-\frac{1}{x}} - \frac{(\frac{1}{x})^{43}}{1-\frac{1}{x}}) = 3(\frac{x^6-x^{-42}}{x-1}) = -4037-j2692  $
Instructor's comments: There is a much shorter solution using the finite geometric series formula. Note that, when the sum is finite, one does not have to worry about convergence. In particular, the formula works even if the norm of the argument is greater than one. -pm

Answer 3

$ \sum_{n=-42}^5 3^{n+1} (1+j)^n = \sum_{n=-42}^5 3^{n+1} (\sqrt{2} e^{j\pi/4})^n $
By letting l = n+42,
$ \sum_{l=0}^{47} 3^{l-41} (\sqrt{2} e^{j\pi/4})^{l-42} =        3^{-41}(\sqrt{2}e^{j\pi/4})^{-42}\sum_{l=0}^{47} (3\sqrt{2}e^{j\pi/4})^l =         \frac{1 - (3\sqrt{2}e^{j\pi/4})^{48}}{1 - 3\sqrt{2}e^{j\pi/4}}3^{-41}(\sqrt{2}e^{j\pi/4})^{-42}   $
This is as far as I could go trying to type these long equations...

Answer 4

use finite geometric series formula $ S=\frac{a_1(1-r^n)}{1-r};a1=3,r=(3+3j)^(-42),n=47,then S=-4037-j2692 $


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal