Line 13: Line 13:
 
<math>\sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N}</math>
 
<math>\sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N}</math>
  
 +
-----------------------------
 +
S5.2_45
 +
\left(  \right)
 +
<math>f\left( x \right)=2x^3</math>
  
 +
<math>
 +
 +
aaa
 +
 +
</math>
 
[[Category:MA181Fall2011Bell]]
 
[[Category:MA181Fall2011Bell]]

Revision as of 14:55, 5 September 2011

Homework 2 collaboration area

Here's some interesting stuff:

$ \sum_{n=1}^N 1 = \dfrac11N $

$ \sum_{n=1}^N n = \dfrac12N\left(N+1\right) $

$ \sum_{n=1}^N n\left(n+1\right) = \dfrac13N\left(N+1\right)\left(N+2\right) $

       $ \vdots $                  $ \vdots $

$ \sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N} $


S5.2_45 \left( \right) $ f\left( x \right)=2x^3 $

$ aaa $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang