Line 1: Line 1:
 
=Homework 2 collaboration area=
 
=Homework 2 collaboration area=
  
<math>\mathrm{Here's some interesting stuff:}</math>
+
<math>\mathrm{d}</math>
  
 
<math>\sum_{n=1}^N 1 = \dfrac11N</math>
 
<math>\sum_{n=1}^N 1 = \dfrac11N</math>

Revision as of 20:49, 3 September 2011

Homework 2 collaboration area

$ \mathrm{d} $

$ \sum_{n=1}^N 1 = \dfrac11N $

$ \sum_{n=1}^N n = \dfrac12N\left(N+1\right) $

$ \sum_{n=1}^N n\left(n+1\right) = \dfrac13N\left(N+1\right)\left(N+2\right) $

       $ \vdots $                  $ \vdots $

$ \sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett