Line 8: Line 8:
  
 
         <math>\vdots</math>                  <math>\vdots</math>
 
         <math>\vdots</math>                  <math>\vdots</math>
 +
 +
<math>\sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}</math>
  
  
 
[[Category:MA181Fall2011Bell]]
 
[[Category:MA181Fall2011Bell]]

Revision as of 20:44, 3 September 2011

Homework 2 collaboration area

$ \sum_{n=1}^N 1 = \dfrac11N $

$ \sum_{n=1}^N n = \dfrac12N\left(N+1\right) $

$ \sum_{n=1}^N n\left(n+1\right) = \dfrac13N\left(N+1\right)\left(N+2\right) $

       $ \vdots $                  $ \vdots $

$ \sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett