Line 1: Line 1:
[[Category:ECE301 S11 Exam 3 more practice]][[Category:ECE301 S11 Exam 3 more practice]][[Category:ECE301 S11 Exam 3 more practice]]
+
[[Category:ECE301 S11 Exam 3 more practice]]
 +
[[Category:ECE301Spring2011Boutin]]
 +
[[Category:Problem_solving]]
  
=ECE301S11_more_practice_CT_conv_3=
+
= Problem =
 +
Compute the convolution
  
 +
<math>z(t)=x(t)*y(t)  \ </math>
  
 +
between
  
Put your content here . . .
+
<math> x(t) = sin(t)u(t + \pi)  \ </math>
 +
 +
and
  
 +
<math>y(t) = cos(t)u(t-\pi)  \ </math>.
  
 +
= My Solution=
 +
<math>
 +
\begin{align}
 +
z(t) &= sin(t)u(t + \pi) * cos(t)u(t-\pi) \\
 +
&= \int_{-\infty}^{\infty} sin(\tau)u(\tau + \pi)cos(t - \tau)u(t - \tau -\pi) \mathrm{d}\tau \\
 +
&= \int_{-\pi}^{t-\pi} sin(\tau) cos(t - \tau) \mathrm{d}\tau  \\
 +
&= \int_{-\pi}^{t-\pi} \frac{e^{j\tau} - e^{-j\tau}}{2j} \frac{e^{j(t-\tau)} + e^{-j(t-\tau)}}{2} \mathrm{d}\tau \\
  
 +
&= \int_{-\pi}^{t-\pi} \frac{e^{j\tau} - e^{-j\tau}}{2j} \frac{e^{j t} e^{-j\tau} + e^{-j t}e^{+j\tau}}{2} \mathrm{d}\tau  \\
  
 +
&= \int_{-\pi}^{t-\pi} \frac{e^{j\tau}e^{j t}e^{-j\tau}}{4j} + \frac{e^{j\tau}e^{-j t}e^{+j\tau}}{4j} -
 +
\frac{e^{-j\tau}e^{j t}e^{-j\tau}}{4j} -
 +
\frac{e^{-j\tau}e^{-j t}e^{+j\tau}}{4j}\mathrm{d}\tau \\
 +
&= \int_{-\pi}^{t-\pi} \frac{e^{j t}}{4j} + \frac{e^{j2\tau}e^{-j t}}{4j} -
 +
\frac{e^{-j2\tau}e^{j t}}{4j} -
 +
\frac{e^{-j t}}{4j}\mathrm{d}\tau \\
 +
 +
&= \begin{cases}
 +
\frac{t e^{j t}}{4j} +
 +
\frac{e^{-j t}}{4j}\int_{-\pi}^{t-\pi}e^{2j\tau}\mathrm{d}\tau -
 +
\frac{e^{j t}}{4j}\int_{-\pi}^{t-\pi}e^{-2j\tau}\mathrm{d}\tau -
 +
\frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\
 +
0 &, \text{else}
 +
\end{cases}\\
 +
 +
&= \begin{cases}
 +
\frac{t e^{j t}}{4j} +
 +
\frac{e^{-j t}}{4j} \left( \frac{e^{2j\tau}}{2j}\Big|_{-\pi}^{t-\pi} \right)-
 +
\frac{e^{j t}}{4j}  \left( \frac{e^{-2j\tau}}{-2j}\Big|_{-\pi}^{t-\pi} \right)-
 +
\frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\
 +
0 &, \text{else}
 +
\end{cases}\\
 +
 +
&= \begin{cases}
 +
\frac{t e^{j t}}{4j}
 +
-\frac{e^{jt}}{8} + \frac{e^{-jt}}{8} -
 +
\frac{e^{-jt}}{8} + \frac{e^{jt}}{8} -
 +
\frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\
 +
0 &, \text{else}
 +
\end{cases}\\
 +
 +
&= \begin{cases}
 +
\frac{t e^{j t}}{4j}
 +
-\frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\
 +
0 &, \text{else}
 +
\end{cases}\\
 +
\end{align}
 +
</math>
 +
==Comments==
 +
Write them here.
 +
----
 
[[ ECE301 S11 Exam 3 more practice|Back to ECE301 S11 Exam 3 more practice]]
 
[[ ECE301 S11 Exam 3 more practice|Back to ECE301 S11 Exam 3 more practice]]

Latest revision as of 06:22, 6 May 2011


Problem

Compute the convolution

$ z(t)=x(t)*y(t) \ $

between

$ x(t) = sin(t)u(t + \pi) \ $

and

$ y(t) = cos(t)u(t-\pi) \ $.

My Solution

$ \begin{align} z(t) &= sin(t)u(t + \pi) * cos(t)u(t-\pi) \\ &= \int_{-\infty}^{\infty} sin(\tau)u(\tau + \pi)cos(t - \tau)u(t - \tau -\pi) \mathrm{d}\tau \\ &= \int_{-\pi}^{t-\pi} sin(\tau) cos(t - \tau) \mathrm{d}\tau \\ &= \int_{-\pi}^{t-\pi} \frac{e^{j\tau} - e^{-j\tau}}{2j} \frac{e^{j(t-\tau)} + e^{-j(t-\tau)}}{2} \mathrm{d}\tau \\ &= \int_{-\pi}^{t-\pi} \frac{e^{j\tau} - e^{-j\tau}}{2j} \frac{e^{j t} e^{-j\tau} + e^{-j t}e^{+j\tau}}{2} \mathrm{d}\tau \\ &= \int_{-\pi}^{t-\pi} \frac{e^{j\tau}e^{j t}e^{-j\tau}}{4j} + \frac{e^{j\tau}e^{-j t}e^{+j\tau}}{4j} - \frac{e^{-j\tau}e^{j t}e^{-j\tau}}{4j} - \frac{e^{-j\tau}e^{-j t}e^{+j\tau}}{4j}\mathrm{d}\tau \\ &= \int_{-\pi}^{t-\pi} \frac{e^{j t}}{4j} + \frac{e^{j2\tau}e^{-j t}}{4j} - \frac{e^{-j2\tau}e^{j t}}{4j} - \frac{e^{-j t}}{4j}\mathrm{d}\tau \\ &= \begin{cases} \frac{t e^{j t}}{4j} + \frac{e^{-j t}}{4j}\int_{-\pi}^{t-\pi}e^{2j\tau}\mathrm{d}\tau - \frac{e^{j t}}{4j}\int_{-\pi}^{t-\pi}e^{-2j\tau}\mathrm{d}\tau - \frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\ 0 &, \text{else} \end{cases}\\ &= \begin{cases} \frac{t e^{j t}}{4j} + \frac{e^{-j t}}{4j} \left( \frac{e^{2j\tau}}{2j}\Big|_{-\pi}^{t-\pi} \right)- \frac{e^{j t}}{4j} \left( \frac{e^{-2j\tau}}{-2j}\Big|_{-\pi}^{t-\pi} \right)- \frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\ 0 &, \text{else} \end{cases}\\ &= \begin{cases} \frac{t e^{j t}}{4j} -\frac{e^{jt}}{8} + \frac{e^{-jt}}{8} - \frac{e^{-jt}}{8} + \frac{e^{jt}}{8} - \frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\ 0 &, \text{else} \end{cases}\\ &= \begin{cases} \frac{t e^{j t}}{4j} -\frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\ 0 &, \text{else} \end{cases}\\ \end{align} $

Comments

Write them here.


Back to ECE301 S11 Exam 3 more practice

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett