Line 5: Line 5:
 
<u></u><u>Definition 1</u>  
 
<u></u><u>Definition 1</u>  
  
<u></u>A system is called '''linear''' if for any constants <math>a,b\in </math>&nbsp; ''all complex numbers'' and for any input signals <span class="texhtml">''x''<sub>1</sub>(''t''),''x''<sub>2</sub>(''t'')</span> with response <span class="texhtml">''y''<sub>1</sub>(''t''),''y''<sub>2</sub>(''t'')</span>, respectively, the system's response to <span class="texhtml">''a''''x''<sub>1</sub>(''t'') + ''b''''x''<sub>2</sub>(''t'')</span> is <span class="texhtml">''a''''y''<sub>1</sub>(''t'') + ''b''''y''<sub>2</sub>(''t'')</span>.  
+
<u></u>A system is called '''linear''' if for any constants <math>a,b\in </math>&nbsp; ''all complex numbers'' and for any input signals <span class="texhtml">''x''<sub>1</sub>(''t''),''x''<sub>2</sub>(''t'')</span> with response <span class="texhtml">''y''<sub>1</sub>(''t''),''y''<sub>2</sub>(''t'')</span>, respectively, the system's response to <span class="texhtml">''a''''x'''''<b><sub>1</sub>(''t'') + ''b'''</b>''x''<sub>2</sub>(''t'')</span> is <span class="texhtml">''a''''y'''''<b><sub>1</sub>(''t'') + ''b'''</b>''y''<sub>2</sub>(''t'')</span>.  
  
<u>Definition 2</u>
+
<u>Definition 2</u>  
  
If&nbsp;<math> x_1(t) \rightarrow
+
If <math> x_1(t) \rightarrow \begin{bmatrix} system \end{bmatrix}

Revision as of 06:15, 6 May 2011

Linearity

There are three definitions we discussed in class for linearity.

Definition 1

A system is called linear if for any constants $ a,b\in $  all complex numbers and for any input signals x1(t),x2(t) with response y1(t),y2(t), respectively, the system's response to a'x1(t) + bx2(t) is a'y1(t) + by2(t).

Definition 2

If $ x_1(t) \rightarrow \begin{bmatrix} system \end{bmatrix} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett