Line 16: | Line 16: | ||
<math>y(t) = u(t+2) - u(t-2) \ </math>. | <math>y(t) = u(t+2) - u(t-2) \ </math>. | ||
− | = Solution = | + | = My Solution= |
<math> | <math> | ||
\begin{align} | \begin{align} |
Revision as of 10:42, 29 April 2011
Problem
Compute the convolution
$ z(t)=x(t)*y(t) \ $
between
$ x(t) = u(t) - u(t-1) \ $
and
$ y(t) = u(t+2) - u(t-2) \ $.
My Solution
$ \begin{align} z(t) &= y(t) * x(t) \\ &= \int_{-\infty}^{\infty}x(\tau) y(t-\tau)\mathrm{d}\tau \\ &= \int_{-\infty}^{\infty}\left( u(\tau) - u(\tau-1) \right) \left( u(t-\tau+2) - u(t-\tau-2) \right)\mathrm{d}\tau \\ &= \int_{0}^{1}\left( u(t-\tau+2) - u(t-\tau-2) \right)\mathrm{d}\tau \\ &= \left[ (t-\tau+2)u(t-\tau+2)\right]\big|_0^1 - \left[ (t-\tau-2)u(t-\tau-2)\right]\big|_0^1 \\ &= \left[ (t+1)u(t+1) - (t+2)u(t+2)\right] + \left[ -(t-3)u(t-3) + (t-2)u(t-2)\right] \end{align} $ ---
Comments
Write them here.