Line 5: Line 5:
 
= By: Daniel Ford  =
 
= By: Daniel Ford  =
  
= <u>What are determinants?</u> =
+
= What are determinants?  =
  
 
To understand determinants, you must first know about permutations.  
 
To understand determinants, you must first know about permutations.  
  
== <u>'''Permutations'''</u> ==
+
== <u>'''Permutations'''</u> ==
  
 
If D = {1, 2,....,n} a set of integers from 1 to n in ascending order, then a permutation is the rearrangement of an integer in D.  
 
If D = {1, 2,....,n} a set of integers from 1 to n in ascending order, then a permutation is the rearrangement of an integer in D.  
Line 23: Line 23:
 
<br>  
 
<br>  
  
<br> [[2011 Spring MA 26500 Momin|Back to 2011 Spring MA 26500 Momin]]
+
== Determinants  ==
  
[[Category:MA265Spring2011Momin]]
+
Now that you know what permutations are, we can start to talk about determinants.
 +
 
 +
<br>
 +
 
 +
Let A = [a<sub>ij&nbsp;</sub>] be an ''n'' x ''n'' matrix. &nbsp;The '''determinant '''function, denoted by '''det''', is defined by<sub></sub>
 +
 
 +
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;det(A) =&nbsp;∑(±)a<sub>1j</sub><sub>1</sub>a<sub>2j2</sub>•••a<sub>njn</sub>
 +
 
 +
<sub></sub>where the summation is over all permutations j<sub>1</sub>j<sub>2</sub>•••j<sub>n</sub> of the set D = {1,2,...,n}. &nbsp;The sign is taken as positive (+) or negative (-) according to whether the permutation&nbsp;j<sub>1</sub>j<sub>2</sub>•••j<sub>n</sub>&nbsp;is ever or odd.<sub><sup></sup></sub>
 +
 
 +
<br>
 +
 
 +
<u>'''Example:'''</u>
 +
 
 +
If A = [a<sub>11</sub>] is a 1 x 1 matrix, then det(A) = a<sub>11</sub>.
 +
 
 +
<u>'''Example:'''</u><br>
 +
 
 +
If
 +
 
 +
  <math> A =
 +
        \begin{bmatrix}
 +
        a<sub>11</sub> & a<sub>12</sub>\\
 +
        a<sub>21</sub> & a<sub>22</sub> \end{bmatrix}</math>
 +
 
 +
then
 +
 
 +
  det(A) = a11a22 - a12a21
 +
 
 +
<br>
 +
 
 +
  [[2011 Spring MA 26500 Momin|Back to 2011 Spring MA 26500 Momin]]
 +
 
 +
[[Category:MA265Spring2011Momin|<br>MA265Spring2011Momin]]

Revision as of 14:00, 25 April 2011


MA 265 Chapter 3 Sections 3.1-3.2

By: Daniel Ford

What are determinants?

To understand determinants, you must first know about permutations.

Permutations

If D = {1, 2,....,n} a set of integers from 1 to n in ascending order, then a permutation is the rearrangement of an integer in D.

Example:

If D = {6, 7, 8, 9}, then 7689 would be a permutation of D.  This corresponds to the function f: D→ D defined by

        f(1) = 6
        f(2) = 7
        f(3) = 8
        f(4) = 9
Then after permutation,
        f(1) = 7
        f(2) = 6
        f(3) = 8
        f(4) = 9

The reason that this is important to know is that the total number of permutations can be even or odd.  So in the permutation 4321, where 4 precedes 3, 4 precedes 1, 4 prececedes 2, 3 precedes 1, and 3 precedes 2.  Thus the total number of inversions in this premutation is 5, which would make 4321, odd.  This determines what sign you put in front, so if it is odd, then you put a negative sign (-) in front; and if it is even, then you put a postive sign (+) in front.


Determinants

Now that you know what permutations are, we can start to talk about determinants.


Let A = [aij ] be an n x n matrix.  The determinant function, denoted by det, is defined by

                    det(A) = ∑(±)a1j1a2j2•••anjn

where the summation is over all permutations j1j2•••jn of the set D = {1,2,...,n}.  The sign is taken as positive (+) or negative (-) according to whether the permutation j1j2•••jn is ever or odd.


Example:

If A = [a11] is a 1 x 1 matrix, then det(A) = a11.

Example:

If

  $  A =          \begin{bmatrix}         a<sub>11</sub> & a<sub>12</sub>\\         a<sub>21</sub> & a<sub>22</sub> \end{bmatrix} $

then

  det(A) = a11a22 - a12a21


 Back to 2011 Spring MA 26500 Momin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn