Line 24: Line 24:
 
:<span style="color:blue">Instructor's comment: Exactly where do you get that the norm of z must be greater than one for convergence? It is important to clearly state it.</span>
 
:<span style="color:blue">Instructor's comment: Exactly where do you get that the norm of z must be greater than one for convergence? It is important to clearly state it.</span>
 
=== Answer 2  ===
 
=== Answer 2  ===
Write it here.
+
<math> \begin{align}
 +
X(z) &= \sum_{n=-\infty}^{\infty}u[n]z^{-n} \\
 +
&= \sum_{n=0}^{\infty}z^{-n} = \sum_{n=0}^{\infty} \left( \frac{1}{z} \right)^n \\
 +
&= \begin{cases} \frac{1}{1-\frac{1}{z}}, & |z| > 1 \\ diverges, & else \end{cases}
 +
\end{align}</math>
 +
 
 +
If <math class="inline">z \leq 1</math> then <math class="inline">\frac{1}{z} \geq 1</math>, then the sum would diverge.
 +
 
 +
 
  
 
=== Answer 3  ===
 
=== Answer 3  ===

Revision as of 11:54, 21 April 2011


Practice Question on Computing the z-transform

Compute the z-transform of the following signal.

$ x[n]=u[n] $


Share your answers below

Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here. --Cmcmican 22:05, 16 April 2011 (UTC)


Answer 1

$ X(z)=\sum_{n=-\infty}^\infty u[n]z^{-n}=\sum_{n=0}^\infty z^{-n} $

$ X(z)=\frac{z}{z-1} \mbox{, ROC: }\Big|z\Big|>1 $

--Cmcmican 22:05, 16 April 2011 (UTC)

TA's comment: Correct!
Instructor's comment: Exactly where do you get that the norm of z must be greater than one for convergence? It is important to clearly state it.

Answer 2

$ \begin{align} X(z) &= \sum_{n=-\infty}^{\infty}u[n]z^{-n} \\ &= \sum_{n=0}^{\infty}z^{-n} = \sum_{n=0}^{\infty} \left( \frac{1}{z} \right)^n \\ &= \begin{cases} \frac{1}{1-\frac{1}{z}}, & |z| > 1 \\ diverges, & else \end{cases} \end{align} $

If $ z \leq 1 $ then $ \frac{1}{z} \geq 1 $, then the sum would diverge.


Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman