Line 1: Line 1:
[[Category:ECE301Spring2011Boutin]]
 
[[Category:Problem_solving]]
 
 
----
 
----
= Practice Question on signal modulation=
 
Let x(t) be a signal whose Fourier transform <math class="inline">{\mathcal X} (\omega) </math> satisfies
 
  
<math>{\mathcal X} (\omega)=0 \text{ when }|\omega| > 1,000 \pi  .</math>
+
= Practice Question on signal modulation =
  
The signal x(t) is modulated with the sinusoidal carrier
+
Let x(t) be a signal whose Fourier transform <math>{\mathcal X} (\omega) </math> satisfies
  
<math>c(t)= \cos ( \omega_c t ).</math>  
+
<math>{\mathcal X} (\omega)=0 \text{ when }|\omega| > 1,000 \pi  .</math>  
  
a) What conditions should be put on <math>\omega_c</math> to insure that x(t) can be recovered from the modulated signal <math>x(t) c(t)</math>?  
+
The signal x(t) is modulated with the sinusoidal carrier
 +
 
 +
<span class="texhtml">''c''(''t'') = cos(ω<sub>''c''</sub>''t'').</span>
 +
 
 +
a) What conditions should be put on <span class="texhtml">ω<sub>''c''</sub></span> to insure that x(t) can be recovered from the modulated signal <span class="texhtml">''x''(''t'')''c''(''t'')</span>?
 +
 
 +
b) Assuming the conditions you stated in a) are met, how can one recover x(t) from the modulated signal <span class="texhtml">''x''(''t'')''c''(''t'')</span>?  
  
b) Assuming the conditions you stated in a) are met, how can one recover x(t) from the modulated signal <math>x(t) c(t)</math>?
 
 
----
 
----
  
 
== Share your answers below  ==
 
== Share your answers below  ==
 +
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!  
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!  
 +
 
----
 
----
 +
 
=== Answer 1  ===
 
=== Answer 1  ===
  
a) <math>\omega_c > \omega_m = 1,000 \pi</math> must be met to insure that x(t) can be recovered.
+
a) <span class="texhtml">ω<sub>''c''</sub> &gt; ω<sub>''m''</sub> = 1,000π</span> must be met to insure that x(t) can be recovered.  
  
b) To demodulate, first multiply again by <math>\cos ( \omega_c t ).</math> Then feed the resulting signal through a low pass filter with a gain of 2 and a cutoff frequency of <math>\omega_c.</math>
+
b) To demodulate, first multiply again by <span class="texhtml">cos(ω<sub>''c''</sub>''t'').</span> Then feed the resulting signal through a low pass filter with a gain of 2 and a cutoff frequency of <span class="texhtml">ω<sub>''c''</sub>.</span>  
  
--[[User:Cmcmican|Cmcmican]] 20:56, 7 April 2011 (UTC)
+
--[[User:Cmcmican|Cmcmican]] 20:56, 7 April 2011 (UTC)  
  
 
=== Answer 2  ===
 
=== Answer 2  ===
Write it here.
+
 
 +
a) w<sub>c</sub> &gt; w<sub>m</sub>
 +
 
 +
&nbsp;&nbsp; &nbsp;w<sub>c</sub> &gt; 1000pi
 +
 
 +
b) Multiply by cos(w<sub>c</sub>t) then pass it through a Low Pass Filter with a gain of 2 and a cutoff f of w<sub>c</sub>
 +
 
 +
<sub></sub>&nbsp;&nbsp; &nbsp;H(w) = 2 [u(w+w<sub>c</sub>)-u(w-w<sub>c</sub>)]
 +
 
 
=== Answer 3  ===
 
=== Answer 3  ===
Write it here.
+
 
 +
Write it here.  
 +
 
 
----
 
----
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
+
 
 +
[[2011 Spring ECE 301 Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
 +
 
 +
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]

Revision as of 07:48, 19 April 2011


Practice Question on signal modulation

Let x(t) be a signal whose Fourier transform $ {\mathcal X} (\omega) $ satisfies

$ {\mathcal X} (\omega)=0 \text{ when }|\omega| > 1,000 \pi . $

The signal x(t) is modulated with the sinusoidal carrier

c(t) = cos(ωct).

a) What conditions should be put on ωc to insure that x(t) can be recovered from the modulated signal x(t)c(t)?

b) Assuming the conditions you stated in a) are met, how can one recover x(t) from the modulated signal x(t)c(t)?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

a) ωc > ωm = 1,000π must be met to insure that x(t) can be recovered.

b) To demodulate, first multiply again by cos(ωct). Then feed the resulting signal through a low pass filter with a gain of 2 and a cutoff frequency of ωc.

--Cmcmican 20:56, 7 April 2011 (UTC)

Answer 2

a) wc > wm

    wc > 1000pi

b) Multiply by cos(wct) then pass it through a Low Pass Filter with a gain of 2 and a cutoff f of wc

    H(w) = 2 [u(w+wc)-u(w-wc)]

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal