Line 1: Line 1:
[[Category:ECE301Spring2011Boutin]]
 
[[Category:Problem_solving]]
 
 
----
 
----
= Practice Question on signal modulation=
 
Let x(t) be a signal whose Fourier transform <math class="inline">{\mathcal X} (\omega) </math> satisfies
 
  
<math>{\mathcal X} (\omega)=0 \text{ when }|\omega| > 1,000 \pi  .</math>
+
= Practice Question on signal modulation =
  
The signal x(t) is modulated with the complex exponential carrier
+
Let x(t) be a signal whose Fourier transform <math>{\mathcal X} (\omega) </math> satisfies
 +
 
 +
<math>{\mathcal X} (\omega)=0 \text{ when }|\omega| > 1,000 \pi  .</math>
 +
 
 +
The signal x(t) is modulated with the complex exponential carrier  
  
 
<math>c(t)= e^{j \omega_c t }.</math>  
 
<math>c(t)= e^{j \omega_c t }.</math>  
  
a) What conditions should be put on <math>\omega_c</math> to insure that x(t) can be recovered from the modulated signal <math>x(t) c(t)</math>?  
+
a) What conditions should be put on <span class="texhtml">ω<sub>''c''</sub></span> to insure that x(t) can be recovered from the modulated signal <span class="texhtml">''x''(''t'')''c''(''t'')</span>?
 +
 
 +
b) Assuming the condition you stated in a) are met, how can one recover x(t) from the modulated signal <span class="texhtml">''x''(''t'')''c''(''t'')</span>?  
  
b) Assuming the condition you stated in a) are met, how can one recover x(t) from the modulated signal <math>x(t) c(t)</math>?
 
 
----
 
----
  
 
== Share your answers below  ==
 
== Share your answers below  ==
 +
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!  
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!  
 +
 
----
 
----
 +
 
=== Answer 1  ===
 
=== Answer 1  ===
  
a) <math>\omega_c > 0</math>
+
a) <span class="texhtml">ω<sub>''c''</sub> &gt; 0</span>  
  
b) to recover x(t) from <math>x(t) c(t)</math>, multiply <math>x(t) c(t)</math> by <math class="inline">e^{-j \omega_c t }.</math>
+
b) to recover x(t) from <span class="texhtml">''x''(''t'')''c''(''t'')</span>, multiply <span class="texhtml">''x''(''t'')''c''(''t'')</span> by <math>e^{-j \omega_c t }.</math>  
  
--[[User:Cmcmican|Cmcmican]] 20:56, 7 April 2011 (UTC)
+
--[[User:Cmcmican|Cmcmican]] 20:56, 7 April 2011 (UTC)  
  
 
=== Answer 2  ===
 
=== Answer 2  ===
Write it here.
+
 
 +
a) w<sub>c</sub> &gt; w<sub>m</sub>
 +
 
 +
&nbsp;&nbsp; &nbsp;w<sub>c</sub> &gt; 1000pi
 +
 
 +
b)Since y(t) = x(t) e^jw<sub>c</sub>t
 +
 
 +
&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;So x(t) = y(t) e^-jw<sub>c</sub>t
 +
 
 +
&nbsp;&nbsp; so to demodulate multiply by e^-jw<sub>c</sub>t
 +
 
 
=== Answer 3  ===
 
=== Answer 3  ===
Write it here.
+
 
 +
Write it here.  
 +
 
 
----
 
----
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
+
 
 +
[[2011 Spring ECE 301 Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
 +
 
 +
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]

Revision as of 07:38, 19 April 2011


Practice Question on signal modulation

Let x(t) be a signal whose Fourier transform $ {\mathcal X} (\omega) $ satisfies

$ {\mathcal X} (\omega)=0 \text{ when }|\omega| > 1,000 \pi . $

The signal x(t) is modulated with the complex exponential carrier

$ c(t)= e^{j \omega_c t }. $

a) What conditions should be put on ωc to insure that x(t) can be recovered from the modulated signal x(t)c(t)?

b) Assuming the condition you stated in a) are met, how can one recover x(t) from the modulated signal x(t)c(t)?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

a) ωc > 0

b) to recover x(t) from x(t)c(t), multiply x(t)c(t) by $ e^{-j \omega_c t }. $

--Cmcmican 20:56, 7 April 2011 (UTC)

Answer 2

a) wc > wm

    wc > 1000pi

b)Since y(t) = x(t) e^jwct

        So x(t) = y(t) e^-jwct

   so to demodulate multiply by e^-jwct

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett