(New page: For the graph of exercise 2, I found a,b,e,d,z. Therefore the total weight is 7. It is the shortest path. --rtabchou)
 
Line 1: Line 1:
 
For the graph of exercise 2, I found a,b,e,d,z. Therefore the total weight is 7. It is the shortest path.  --rtabchou
 
For the graph of exercise 2, I found a,b,e,d,z. Therefore the total weight is 7. It is the shortest path.  --rtabchou
 +
 +
I'm not sure you are on the right problem.
 +
We need to determine if the graph is planar which it is not by corollary 3 of theorem 1 as 2*v-4=8 which is less than e=9.  You can use this corollary since there are no circuits of length 3.

Revision as of 14:29, 30 November 2008

For the graph of exercise 2, I found a,b,e,d,z. Therefore the total weight is 7. It is the shortest path. --rtabchou

I'm not sure you are on the right problem. We need to determine if the graph is planar which it is not by corollary 3 of theorem 1 as 2*v-4=8 which is less than e=9. You can use this corollary since there are no circuits of length 3.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang