Line 36: Line 36:
 
</math>
 
</math>
  
Thus in order to recover <math>x(t)</math> we need to filter out the second term of <math>r(t)</math> and amplify it by a factor of 2. To do this, we pass <math>r(t)</math> through a low pass filter with a cut-off frequency <math>\omega_cut=\omega_M=1000\pi</math> and gain 2. The frequency response of this low pass filter is:
+
Thus in order to recover <math>x(t)</math> we need to filter out the second term of <math>r(t)</math> and amplify the remainder by a factor of 2 (you may want to draw the FT of <math>r(t)</math> to verify this). To achieve that, we pass <math>r(t)</math> through a low pass filter with a cut-off frequency <math>\omega_{cut}=\omega_M=1000\pi</math> and gain 2. The frequency response of this low pass filter is:
  
 
:<math>\mathcal{H}(\omega)=\left\{\begin{array}{ll}
 
:<math>\mathcal{H}(\omega)=\left\{\begin{array}{ll}
Line 43: Line 43:
 
\end{array}\right.
 
\end{array}\right.
 
</math>
 
</math>
 +
 +
==Question 2==
 +
 +
a) The Fourier series coefficients of <math>c(t)</math> are:
 +
 +
:<math>\begin{align}
 +
a_k&=\frac{\sin(\frac{2\pi k 10^{-3}}{4\times 10^{-3}})}{\pi k} \\
 +
&=\frac{\sin{\frac{\pi k}{2}}}{\pi k}
 +
\end{align}
 +
</math>
 +
and using the synthesis equation of the Fourier series we get:
 +
 +
:<math>c(t)=\sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi k}{T}t}=\sum_{k=-\infty}^{\infty} a_k e^{j2000\pi kt}</math>
 +
 +
Taking the FT of the latter sum, we get:
 +
 +
:<math>\mathcal{C}(\omega)=2\pi\sum_{k=-\infty}^{\infty}a_k \delta(\omega-2000\pi k)</math>
 +
 +
Now, let <math>y(t)=x(t)c(t)</math>, then:
 +
 +
<math>\begin{align}
 +
\mathcal{Y}(\omega)&=\frac{1}{2\pi}\mathcal{X}(\omega)*\mathcal{C}(\omega) \\
 +
&=\frac{1}{2\pi}\mathcal{X}(\omega)*2\pi\sum_{k=-\infty}^{\infty}a_k \delta(\omega-2000\pi k) \\
 +
&=\sum_{k=-\infty}^{\infty}a_k \mathcal{X}(\omega-2000\pi k)
 +
\end{align}</math>
 +
 +
In order to recover <math>x(t)</math> we need to avoid aliasing and hence <math>2000\pi>2\omega_M</math>. Then <math>\omega_M<1000\pi</math>.
 +
 +
b) We need to find <math>a_0</math> since the image at DC is multiplied by it: .<math>a_0=\lim_{k\to 0}=\frac{\frac{\pi k}{2}}{\pi k}=\frac{1}{2}</math>
 +
 +
Now, to recover <math>x(t)</math> we need to filter out the images other than the image at DC and and multiply it by <math class="inline">\frac{1}{a_0}=2</math>. Hence we use a low pass filter with the following frequency response:
 +
 +
:<math>\mathcal{H}(\omega)=\left\{\begin{array}{ll}
 +
2, & \mbox{  for  }  |\omega|<\omega_{cut}\\
 +
0, & \mbox{  elsewhere}
 +
\end{array}\right.
 +
</math>
 +
 +
where the cut-off frequency <math>\omega_cut</math> of the low pass filter can be anywhere between <math>\omega_M</math> and <math>2000\pi-\omega_M</math>.
 +
 +
 
----
 
----
 
[[HW10 ECE301 Spring2011 Prof Boutin| HW10]]
 
[[HW10 ECE301 Spring2011 Prof Boutin| HW10]]

Revision as of 17:32, 13 April 2011

Homework 10 Solutions, ECE301 Spring 2011 Prof. Boutin

Students should feel free to make comments/corrections or ask questions directly on this page.

Question 1

a) We can write

$ y_1(t)=e^{j \theta_c}x(t)e^{j\omega_c t} $

Notice that this is exactly as modulating by $ e^{j\omega_c t} $ but now we are multiplying with a complex exponential independent of $ t $ (phase shift). We can recover the signal $ x(t) $ for any $ \omega_c $, and hence there are no conditions put on $ \omega_c $.

b) In order to recover signal $ x(t) $, we multiply $ y_1(t) $ by $ e^{-j(\omega_c+\theta_c)} $.

c) We can write

$ y_2(t)=x(t)\left(\frac{e^{j\omega_c t}-e^{-j\omega_c t}}{2j}\right) $

Taking the FT of $ y_2(t) $, we get:

$ \begin{align} \mathcal{Y}_2(\omega)&=\frac{1}{2\pi(2j)}\mathcal{X}(\omega)*[2\pi\delta(\omega-\omega_c)-2\pi\delta(\omega+\omega_c)] \\ &=\frac{1}{2j}\mathcal{X}(\omega-\omega_c)-\frac{1}{2j}\mathcal{X}(\omega+\omega_c) \end{align} $

Now, to insure that we can recover signal $ x(t) $ we need to avoid having the two images of $ X(\omega) $ overlap. Hence we need $ \omega_c>\omega_M $. But $ \omega_M=2000\pi/2=1000\pi $. Hence in order for $ x(t) $ to be recoverable we need:

$ \omega_c>1000\pi $

d)In order to recover signal $ x(t) $ we multiply $ y_2(t) $ by $ \sin(\omega_c t) $ first. The signal after multiplying with $ \sin(\omega_c t) $ is:

$ \begin{align} r(t)&=y_2(t)\sin(\omega_c t) \\ &=\sin^2(\omega_c t)x(t) \\ &=\frac{1}{2}x(t)-\frac{1}{2}\cos(2\omega_c t)x(t) \end{align} $

Thus in order to recover $ x(t) $ we need to filter out the second term of $ r(t) $ and amplify the remainder by a factor of 2 (you may want to draw the FT of $ r(t) $ to verify this). To achieve that, we pass $ r(t) $ through a low pass filter with a cut-off frequency $ \omega_{cut}=\omega_M=1000\pi $ and gain 2. The frequency response of this low pass filter is:

$ \mathcal{H}(\omega)=\left\{\begin{array}{ll} 2, & \mbox{ for } |\omega|<1000\pi\\ 0, & \mbox{ elsewhere} \end{array}\right. $

Question 2

a) The Fourier series coefficients of $ c(t) $ are:

$ \begin{align} a_k&=\frac{\sin(\frac{2\pi k 10^{-3}}{4\times 10^{-3}})}{\pi k} \\ &=\frac{\sin{\frac{\pi k}{2}}}{\pi k} \end{align} $

and using the synthesis equation of the Fourier series we get:

$ c(t)=\sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi k}{T}t}=\sum_{k=-\infty}^{\infty} a_k e^{j2000\pi kt} $

Taking the FT of the latter sum, we get:

$ \mathcal{C}(\omega)=2\pi\sum_{k=-\infty}^{\infty}a_k \delta(\omega-2000\pi k) $

Now, let $ y(t)=x(t)c(t) $, then:

$ \begin{align} \mathcal{Y}(\omega)&=\frac{1}{2\pi}\mathcal{X}(\omega)*\mathcal{C}(\omega) \\ &=\frac{1}{2\pi}\mathcal{X}(\omega)*2\pi\sum_{k=-\infty}^{\infty}a_k \delta(\omega-2000\pi k) \\ &=\sum_{k=-\infty}^{\infty}a_k \mathcal{X}(\omega-2000\pi k) \end{align} $

In order to recover $ x(t) $ we need to avoid aliasing and hence $ 2000\pi>2\omega_M $. Then $ \omega_M<1000\pi $.

b) We need to find $ a_0 $ since the image at DC is multiplied by it: .$ a_0=\lim_{k\to 0}=\frac{\frac{\pi k}{2}}{\pi k}=\frac{1}{2} $

Now, to recover $ x(t) $ we need to filter out the images other than the image at DC and and multiply it by $ \frac{1}{a_0}=2 $. Hence we use a low pass filter with the following frequency response:

$ \mathcal{H}(\omega)=\left\{\begin{array}{ll} 2, & \mbox{ for } |\omega|<\omega_{cut}\\ 0, & \mbox{ elsewhere} \end{array}\right. $

where the cut-off frequency $ \omega_cut $ of the low pass filter can be anywhere between $ \omega_M $ and $ 2000\pi-\omega_M $.



HW10

Back to 2011 Spring ECE 301 Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett