Line 1: | Line 1: | ||
{| | {| | ||
− | ! colspan="2" style="background: | + | |- |
+ | ! colspan="2" style="background: #e4bc7e; font-size: 110%;" | Discrete-time Fourier Transform Pairs and Properties | ||
|- | |- | ||
! colspan="2" style="background: #eee;" | DT Fourier transform and its Inverse | ! colspan="2" style="background: #eee;" | DT Fourier transform and its Inverse | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | DT Fourier Transform | + | | align="right" style="padding-right: 1em;" | DT Fourier Transform |
− | |- | + | | <math>\,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\,</math> |
− | | align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform | + | |- |
+ | | align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform | ||
+ | | <math>\,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\,</math> | ||
|} | |} | ||
+ | |||
{| | {| | ||
|- | |- | ||
+ | ! colspan="4" style="background: #eee;" | | ||
! colspan="4" style="background: #eee;" | DT Fourier Transform Pairs | ! colspan="4" style="background: #eee;" | DT Fourier Transform Pairs | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math> x[n] \ </math> | ||
+ | | <math>\longrightarrow</math> | ||
+ | | <math> \mathcal{X}(\omega) \ </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | align="right" style="padding-right: 1em;" | DTFT of a complex exponential | ||
+ | | <math>e^{jw_0n} \ </math> | ||
+ | | | ||
+ | | <math>\pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ </math> | ||
|- | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | ([[DTFT rectangular window|info]]) DTFT of a rectangular window | ||
+ | | <math>w[n]= \ </math> | ||
+ | | | ||
+ | | add formula here | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>a^{n} u[n], |a|<1 \ </math> | ||
+ | | | ||
+ | | <math>\frac{1}{1-ae^{-j\omega}} \ </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>(n+1)a^{n} u[n], |a|<1 \ </math> | ||
+ | | | ||
+ | | <math>\frac{1}{(1-ae^{-j\omega})^2} \ </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\sin\left(\omega _0 n\right) u[n] \ </math> | ||
+ | | | ||
+ | | <math>\frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right)</math> | ||
|} | |} | ||
{| | {| | ||
|- | |- | ||
+ | ! colspan="4" style="background: #eee;" | | ||
! colspan="4" style="background: #eee;" | DT Fourier Transform Properties | ! colspan="4" style="background: #eee;" | DT Fourier Transform Properties | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>x[n] \ </math> | ||
+ | | <math>\longrightarrow</math> | ||
+ | | <math> \mathcal{X}(\omega) \ </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | align="right" style="padding-right: 1em;" | multiplication property | ||
+ | | <math>x[n]y[n] \ </math> | ||
+ | | | ||
+ | | <math>\frac{1}{2\pi} \int_{2\pi} X(\theta)Y(\omega-\theta)d\theta</math> | ||
|- | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | convolution property | ||
+ | | <math>x[n]*y[n] \!</math> | ||
+ | | | ||
+ | | <math> X(\omega)Y(\omega) \!</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | time reversal | ||
+ | | <math>\ x[-n] </math> | ||
+ | | | ||
+ | | <math>\ X(-\omega)</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | Differentiation in frequency | ||
+ | | <math>\ nx[n] </math> | ||
+ | | | ||
+ | | <math>\ j\frac{d}{d\omega}X(\omega)</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | Linearity | ||
+ | | <math>ax[n]+by[n]</math> | ||
+ | | | ||
+ | | <math>aX(\omega)+bY(\omega)</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | Time Shifting | ||
+ | | <math>x[n-n_0]</math> | ||
+ | | | ||
+ | | <math>e^{-j\omega n_0}X(\omega)</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | Frequency Shifting | ||
+ | | <math>e^{j\omega_0 n}x[n]</math> | ||
+ | | | ||
+ | | <math>X(\omega-\omega_0)</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | Conjugation | ||
+ | | <math>x^{*}[n]</math> | ||
+ | | | ||
+ | | <math>X^{*}(-\omega)</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | Time Expansion | ||
+ | | <math>x_(k) [n]=\left\{\begin{array}{ll}x[n/k], & \text{ if n = multiple of k},\\ 0, & \text{else.}\end{array} \right.</math> | ||
+ | | | ||
+ | | <math>X(k\omega)</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | Differentiating in Time | ||
+ | | <math>x[n]-x[n-1]</math> | ||
+ | | | ||
+ | | <math>(1-e^{-j\omega})X(\omega)</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | Accumulation | ||
+ | | <math>\sum^{n}_{k=-\infty} x[k]</math> | ||
+ | | | ||
+ | | <math>\frac{1}{1-e^{-j\omega}X(\omega)</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | Symmetry | ||
+ | | x[n] real and even | ||
+ | | | ||
+ | | <math>X(\omega)</math> real and even | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | x[n] real and odd | ||
+ | | | ||
+ | | <math>X(\omega)</math> purely imaginary and odd | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | | ||
+ | | | ||
+ | | | ||
|} | |} | ||
Line 45: | Line 153: | ||
|- | |- | ||
! colspan="2" style="background: #eee;" | Other DT Fourier Transform Properties | ! colspan="2" style="background: #eee;" | Other DT Fourier Transform Properties | ||
− | |- | + | |- |
− | | align="right" style="padding-right: 1em;" | Parseval's relation | + | | align="right" style="padding-right: 1em;" | Parseval's relation |
+ | | <math>\frac {1}{N} \sum_{n=-\infty}^{\infty}\left| x[n] \right|^2 = </math> | ||
|} | |} | ||
+ | |||
---- | ---- | ||
− | [[ | + | |
+ | [[Collective Table of Formulas|Back to Collective Table]] | ||
+ | |||
[[Category:Formulas]] | [[Category:Formulas]] |
Revision as of 12:10, 10 April 2011
Discrete-time Fourier Transform Pairs and Properties | |
---|---|
DT Fourier transform and its Inverse | |
DT Fourier Transform | $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $ |
Inverse DT Fourier Transform | $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $ |
DT Fourier Transform Pairs | |||||||
---|---|---|---|---|---|---|---|
$ x[n] \ $ | $ \longrightarrow $ | $ \mathcal{X}(\omega) \ $ | |||||
DTFT of a complex exponential | $ e^{jw_0n} \ $ | $ \pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $ | |||||
(info) DTFT of a rectangular window | $ w[n]= \ $ | add formula here | |||||
$ a^{n} u[n], |a|<1 \ $ | $ \frac{1}{1-ae^{-j\omega}} \ $ | ||||||
$ (n+1)a^{n} u[n], |a|<1 \ $ | $ \frac{1}{(1-ae^{-j\omega})^2} \ $ | ||||||
$ \sin\left(\omega _0 n\right) u[n] \ $ | $ \frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right) $ |
DT Fourier Transform Properties | |||||||
---|---|---|---|---|---|---|---|
$ x[n] \ $ | $ \longrightarrow $ | $ \mathcal{X}(\omega) \ $ | |||||
multiplication property | $ x[n]y[n] \ $ | $ \frac{1}{2\pi} \int_{2\pi} X(\theta)Y(\omega-\theta)d\theta $ | |||||
convolution property | $ x[n]*y[n] \! $ | $ X(\omega)Y(\omega) \! $ | |||||
time reversal | $ \ x[-n] $ | $ \ X(-\omega) $ | |||||
Differentiation in frequency | $ \ nx[n] $ | $ \ j\frac{d}{d\omega}X(\omega) $ | |||||
Linearity | $ ax[n]+by[n] $ | $ aX(\omega)+bY(\omega) $ | |||||
Time Shifting | $ x[n-n_0] $ | $ e^{-j\omega n_0}X(\omega) $ | |||||
Frequency Shifting | $ e^{j\omega_0 n}x[n] $ | $ X(\omega-\omega_0) $ | |||||
Conjugation | $ x^{*}[n] $ | $ X^{*}(-\omega) $ | |||||
Time Expansion | $ x_(k) [n]=\left\{\begin{array}{ll}x[n/k], & \text{ if n = multiple of k},\\ 0, & \text{else.}\end{array} \right. $ | $ X(k\omega) $ | |||||
Differentiating in Time | $ x[n]-x[n-1] $ | $ (1-e^{-j\omega})X(\omega) $ | |||||
Accumulation | $ \sum^{n}_{k=-\infty} x[k] $ | $ \frac{1}{1-e^{-j\omega}X(\omega) $ | |||||
Symmetry | x[n] real and even | $ X(\omega) $ real and even | |||||
x[n] real and odd | $ X(\omega) $ purely imaginary and odd | ||||||
Other DT Fourier Transform Properties | |
---|---|
Parseval's relation | $ \frac {1}{N} \sum_{n=-\infty}^{\infty}\left| x[n] \right|^2 = $ |