(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
Should question 3 be
 
Should question 3 be
  
Let x(t) be a continuous-time signal with <math class="inline"> \left| {\mathcal X} (\omega)\right| =0</math> for  <math class="inline"> \left| \omega\right| > \omega_s </math>. Can one recover the signal x(t) from the signal <math class="inline"> y(t)=x(t) p(t-3) </math>, where  
+
Let x(t) be a continuous-time signal with <math class="inline"> \left| {\mathcal X} (\omega)\right| =0</math> for  <math class="inline"> \left| \omega\right| > \omega_m </math>. Can one recover the signal x(t) from the signal <math class="inline"> y(t)=x(t) p(t-3) </math>, where  
  
 
<math class="inline"> p(t)= \sum_{k=-\infty}^\infty \delta (t- \frac{2\pi}{\omega_s} k) ?</math>
 
<math class="inline"> p(t)= \sum_{k=-\infty}^\infty \delta (t- \frac{2\pi}{\omega_s} k) ?</math>
Line 10: Line 10:
  
 
Let x(t) be a continuous-time signal with <math class="inline"> \left| {\mathcal X} (\omega)\right| =0</math> for  <math class="inline"> \left| \omega)\right| > \omega_m </math>. Can one recover the signal x(t) from the signal <math class="inline"> y(t)=x(t) p(t-3) </math>, where
 
Let x(t) be a continuous-time signal with <math class="inline"> \left| {\mathcal X} (\omega)\right| =0</math> for  <math class="inline"> \left| \omega)\right| > \omega_m </math>. Can one recover the signal x(t) from the signal <math class="inline"> y(t)=x(t) p(t-3) </math>, where
 +
 +
<math class="inline"> p(t)= \sum_{k=-\infty}^\infty \delta (t- \frac{2\pi}{\omega_s} n) ?</math>
 +
 +
:TA's comment: Yes. It should be k and not n.
 +
 +
Can you post a question similar to number 1 a)?
 +
-mm

Latest revision as of 15:06, 2 April 2011

Should question 3 be

Let x(t) be a continuous-time signal with $ \left| {\mathcal X} (\omega)\right| =0 $ for $ \left| \omega\right| > \omega_m $. Can one recover the signal x(t) from the signal $ y(t)=x(t) p(t-3) $, where

$ p(t)= \sum_{k=-\infty}^\infty \delta (t- \frac{2\pi}{\omega_s} k) ? $


instead of this?


Let x(t) be a continuous-time signal with $ \left| {\mathcal X} (\omega)\right| =0 $ for $ \left| \omega)\right| > \omega_m $. Can one recover the signal x(t) from the signal $ y(t)=x(t) p(t-3) $, where

$ p(t)= \sum_{k=-\infty}^\infty \delta (t- \frac{2\pi}{\omega_s} n) ? $

TA's comment: Yes. It should be k and not n.

Can you post a question similar to number 1 a)? -mm

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva