(New page: Category:ECE301Spring2011Boutin Category:Problem_solving ---- = Practice Question on the Properties of the Continuous-time Fourier Transform = Let x(t) be a continuous time signal ...)
 
Line 36: Line 36:
 
</math>
 
</math>
 
=== Answer 2  ===
 
=== Answer 2  ===
Write it here.
+
<math>
 +
\begin{align}
 +
{\mathcal F} \left( x(3t+7) \right) &= \int_{-\infty}^\infty x(3t+7) e^{-j\omega t} dt \\
 +
&= \int_{-\infty}^\infty x(u) e^{-j\omega \frac{(u-7)}{3}} \frac{du}{3}, \text{ (letting }u=3t+7), \\
 +
&= \frac{1}{3} \int_{-\infty}^\infty x(u)e^{-\frac{j\omega u}{3}}e^{\frac{7j\omega}{3}} du\\
 +
&= \frac{e^{\frac{7j\omega}{3}}}{3}\int_{-\infty}^\infty x(u)e^{-\frac{j\omega u}{3}} du \\
 +
&= \frac{e^{\frac{7j\omega}{3}}}{3} \mathcal{X}(\omega)
 +
\end{align}
 +
</math>
 +
--[[User:Ekhall|Ekhall]] 11:45, 2 March 2011 (UTC)
 
=== Answer 3  ===
 
=== Answer 3  ===
 
Write it here.
 
Write it here.
 
----
 
----
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]

Revision as of 07:45, 2 March 2011


Practice Question on the Properties of the Continuous-time Fourier Transform

Let x(t) be a continuous time signal with Fourier transform $ {\mathcal X} (\omega) $.

We have seen the time-shifting property of the Fourier transform:

$ {\mathcal F} \left( x(t-t_0) \right) = e^{-j \omega t_0} {\mathcal X} (\omega) $

which gives us an expression for the Fourier transform of $ y(t)=x(t-t_0) $ in terms of $ {\mathcal X} (\omega) $. Note that, to prove this property, one can proceed as follows:

$ \begin{align} {\mathcal F} \left( x(t-t_0) \right) &= \int_{-\infty}^\infty x(t-t_0) e^{-j\omega t} dt \\ &= \int_{-\infty}^\infty x(u) e^{-j\omega (u+t_0)} du, \text{ (letting }u=t-t_0), \\ &= e^{-j\omega t_0} \int_{-\infty}^\infty x(u) e^{-j\omega u} du \\ &= e^{-j\omega t_0} {\mathcal X} (\omega). \end{align} $

Using a similar approach as above, derive an expression for the Fourier transform of y(t)=x(3t+7) in terms of $ {\mathcal X} (\omega) $.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Instructor's hint: You should start like this

$ \begin{align} {\mathcal F} \left( x(3t+7) \right) &= \int_{-\infty}^\infty x(3t+7) e^{-j\omega t} dt \\ &= \int_{-\infty}^\infty x(u) e^{-j\omega \frac{(u-7)}{3}} \frac{du}{3}, \text{ (letting }u=3t+7), \\ &= ... \end{align} $

Answer 2

$ \begin{align} {\mathcal F} \left( x(3t+7) \right) &= \int_{-\infty}^\infty x(3t+7) e^{-j\omega t} dt \\ &= \int_{-\infty}^\infty x(u) e^{-j\omega \frac{(u-7)}{3}} \frac{du}{3}, \text{ (letting }u=3t+7), \\ &= \frac{1}{3} \int_{-\infty}^\infty x(u)e^{-\frac{j\omega u}{3}}e^{\frac{7j\omega}{3}} du\\ &= \frac{e^{\frac{7j\omega}{3}}}{3}\int_{-\infty}^\infty x(u)e^{-\frac{j\omega u}{3}} du \\ &= \frac{e^{\frac{7j\omega}{3}}}{3} \mathcal{X}(\omega) \end{align} $ --Ekhall 11:45, 2 March 2011 (UTC)

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang