(New page: Category:ECE301Spring2011Boutin Category:Problem_solving ---- = Practice Question on Computing the Fourier Transform of a Discrete-time Signal = Compute the Fourier transform of ...)
 
Line 15: Line 15:
 
----
 
----
 
=== Answer 1  ===
 
=== Answer 1  ===
Write it here.
+
 
 +
<math>\mathcal X (\omega) = \sum_{n=-\infty}^\infty (u[n+1]-u[n-2])e^{-j\omega n}=\sum_{n=-1}^2 e^{-j\omega n}=</math>
 +
 
 +
<math>\mathcal X (\omega) = e^{j\omega}+1+e^{-j\omega}+e^{-j2\omega}</math>
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 19:57, 28 February 2011 (UTC)
 +
 
 
=== Answer 2  ===
 
=== Answer 2  ===
 
Write it here.
 
Write it here.

Revision as of 14:57, 28 February 2011


Practice Question on Computing the Fourier Transform of a Discrete-time Signal

Compute the Fourier transform of the signal

$ x[n] = u[n+1]-u[n-2].\ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \mathcal X (\omega) = \sum_{n=-\infty}^\infty (u[n+1]-u[n-2])e^{-j\omega n}=\sum_{n=-1}^2 e^{-j\omega n}= $

$ \mathcal X (\omega) = e^{j\omega}+1+e^{-j\omega}+e^{-j2\omega} $

--Cmcmican 19:57, 28 February 2011 (UTC)

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn