Line 13: Line 13:
 
----
 
----
 
=== Answer 1  ===
 
=== Answer 1  ===
Write it here.
+
<math>\boldsymbol{\chi}(\omega)=\int_{-\infty}^\infty x(t)e^{-j\omega t}dt=\int_{-\infty}^\infty e^{-t} u(t)e^{-j\omega t}dt=\int_{0}^\infty e^{-t(j\omega+1)}dt=\frac{e^{-t(j\omega+1)}}{-(j\omega+1)}\Bigg|_0^\infty=\frac{e^{-\infty}}{-(j\omega+1)}-\frac{e^{0}}{-(j\omega+1)}=\frac{1}{j\omega+1}</math>
 +
 
 +
<math>\boldsymbol{\chi}(\omega)=\frac{1}{j\omega+1}</math>
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 02:31, 19 February 2011 (UTC)
 +
 
 
=== Answer 2  ===
 
=== Answer 2  ===
 
Write it here.
 
Write it here.

Revision as of 22:31, 18 February 2011

Practice Question on Computing the Fourier Transform of a Continuous-time Signal

Compute the Fourier transform of the signal

$ x(t) = e^{-t} u(t).\ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \boldsymbol{\chi}(\omega)=\int_{-\infty}^\infty x(t)e^{-j\omega t}dt=\int_{-\infty}^\infty e^{-t} u(t)e^{-j\omega t}dt=\int_{0}^\infty e^{-t(j\omega+1)}dt=\frac{e^{-t(j\omega+1)}}{-(j\omega+1)}\Bigg|_0^\infty=\frac{e^{-\infty}}{-(j\omega+1)}-\frac{e^{0}}{-(j\omega+1)}=\frac{1}{j\omega+1} $

$ \boldsymbol{\chi}(\omega)=\frac{1}{j\omega+1} $

--Cmcmican 02:31, 19 February 2011 (UTC)

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang