Line 31: Line 31:
 
--[[User:Cmcmican|Cmcmican]] 21:35, 7 February 2011 (UTC)
 
--[[User:Cmcmican|Cmcmican]] 21:35, 7 February 2011 (UTC)
  
 +
:TA's comment: That looks fine. The expression for <math>a_k</math> is better written in terms of a sin function, though. Regarding the synthesis of <math>x(t)</math>, you got it wrong actually. The complex exponentials should not have a minus sign in their exponents and for <math>k=0</math> the complex exponential has a frequency of zero (DC).
 +
 +
:Another thing is that you may also further simplify <math>x(t)</math> and write it in terms of sin waves only. You will actually notice some pattern in the frequencies of these sin waves.
 
===Answer 2===
 
===Answer 2===
 
Write it here.
 
Write it here.

Revision as of 09:55, 14 February 2011

Practice Question on Computing the Fourier Series continuous-time signal

Obtain the Fourier series the CT signal

$ x(t) = \left\{ \begin{array}{ll} 1, & \text{ for } -5\leq t \leq 5,\\ 0, & \text{ for } 5< |t| \leq 10, \end{array} \right. \ $

x(t) periodic with period 20.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ k=0\, $

$ a_0=\frac{1}{20}\int_{-10}^{10}x(t)e^{-0}dt=\frac{1}{20}\int_{-5}^{5}1dt=\frac{1}{2} $

$ k\ne0 $

$ a_k=\frac{1}{20}\int_{-10}^{10}x(t)e^{-jkw_0t}dt=\frac{1}{20}\int_{-5}^{5}e^{-jk\frac{\pi}{10}t}dt=\frac{1}{20}\Bigg[\frac{e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}}{-jk\frac{\pi}{10}}\Bigg]=\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg) $

$ x(t)=\frac{1}{2}e^{-jk\frac{\pi}{10}t}+\sum_{k=-\infty}^-1\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t}+\sum_{k=1}^\infty\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t} $

--Cmcmican 21:35, 7 February 2011 (UTC)

TA's comment: That looks fine. The expression for $ a_k $ is better written in terms of a sin function, though. Regarding the synthesis of $ x(t) $, you got it wrong actually. The complex exponentials should not have a minus sign in their exponents and for $ k=0 $ the complex exponential has a frequency of zero (DC).
Another thing is that you may also further simplify $ x(t) $ and write it in terms of sin waves only. You will actually notice some pattern in the frequencies of these sin waves.

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach