Line 22: Line 22:
 
=== Answer 1  ===
 
=== Answer 1  ===
  
Solution 1: ω<sub>o</sub> = <math>2*\pi/T = 2*pi/20=\pi/10</math>
+
Solution 1:
a<sub>o</sub> is the DC value of the AC signal and is therefore 1/2
+
 +
1) ω<sub>o</sub> = <math>2*\pi/T = 2*pi/20=\pi/10</math>
  
a<sub>k</sub> = <math> 1/20 * \int_a^b \! x(t)*e^{-j*k*(\pi/10)*t}\,dx </math> = <math>e^{j*k*\pi/2}-e^{-j*k*\pi/2}/(2*\pi*j*k) = sin(k*\pi/2)/(k*\pi)</math>
+
2) a<sub>o</sub> is the DC value of the AC signal and is therefore 1/2
  
<br> === Answer 2 === Write it here. === Answer 3 === Write it here. ---- [[2011 Spring ECE 301 Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]  
+
3) a<sub>k</sub> = <math> 1/20 * \int_a^b \! x(t)*e^{-j*k*(\pi/10)*t}\,dx </math> = <math>e^{j*k*\pi/2}-e^{-j*k*\pi/2}/(2*\pi*j*k) = sin(k*\pi/2)/(k*\pi)</math>([[User:Clarkjv|Clarkjv]] 18:25, 8 February 2011 (UTC))
 +
 
 +
Solution 2:
 +
 
 +
1)ω<sub>o</sub>=<math>\pi/10</math> (see solution 1)
 +
 
 +
From example 3.5 (sec. 3.3 pg 193 Signals and Systems 2nd edition Oppenheim)
 +
 
 +
<math>a_k=sin(k * w_o * T_1)/(k*\pi)</math>,
 +
 
 +
2)a<sub>o</sub> is still the DC value of the AC signal and therefore,
 +
a<sub>o</sub> = 1/2 &
 +
3) a<sub>k</sub> = <math>sin(k*\pi/2)/(k*\pi)</math>([[User:Clarkjv|Clarkjv]] 18:25, 8 February 2011 (UTC))
  
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]

Revision as of 13:25, 8 February 2011

Practice Question on Computing the Fourier Series discrete-time signal

Obtain the Fourier series the DT signal

$ x[n] = \left\{ \begin{array}{ll} 1, & \text{ for } -5\leq n \leq 5,\\ 0, & \text{ for } 5< |n| \leq 10. \end{array} \right. \ $

x[n] periodic with period 20.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Solution 1:

1) ωo = $ 2*\pi/T = 2*pi/20=\pi/10 $

2) ao is the DC value of the AC signal and is therefore 1/2

3) ak = $ 1/20 * \int_a^b \! x(t)*e^{-j*k*(\pi/10)*t}\,dx $ = $ e^{j*k*\pi/2}-e^{-j*k*\pi/2}/(2*\pi*j*k) = sin(k*\pi/2)/(k*\pi) $(Clarkjv 18:25, 8 February 2011 (UTC))

Solution 2:

1)ωo=$ \pi/10 $ (see solution 1)

From example 3.5 (sec. 3.3 pg 193 Signals and Systems 2nd edition Oppenheim)

$ a_k=sin(k * w_o * T_1)/(k*\pi) $,

2)ao is still the DC value of the AC signal and therefore, ao = 1/2 & 3) ak = $ sin(k*\pi/2)/(k*\pi) $(Clarkjv 18:25, 8 February 2011 (UTC))

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett