Line 27: Line 27:
 
<math>a_k=\frac{1}{20}\int_{-10}^{10}x(t)e^{-jkw_0t}dt=\frac{1}{20}\int_{-5}^{5}e^{-jk\frac{\pi}{10}t}dt=\frac{1}{20}\Bigg[\frac{e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}}{-jk\frac{\pi}{10}}\Bigg]=\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)</math>
 
<math>a_k=\frac{1}{20}\int_{-10}^{10}x(t)e^{-jkw_0t}dt=\frac{1}{20}\int_{-5}^{5}e^{-jk\frac{\pi}{10}t}dt=\frac{1}{20}\Bigg[\frac{e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}}{-jk\frac{\pi}{10}}\Bigg]=\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)</math>
  
<math>x(t)=\frac{1}{2}e^{-jk\frac{\pi}{10}t}+\sum_{k=-\infty}^\infty\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t}</math>
+
<math>x(t)=\frac{1}{2}e^{-jk\frac{\pi}{10}t}+\sum_{k=-\infty}^-1\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t}+\sum_{k=1}^\infty\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t}</math>
  
 
--[[User:Cmcmican|Cmcmican]] 21:35, 7 February 2011 (UTC)
 
--[[User:Cmcmican|Cmcmican]] 21:35, 7 February 2011 (UTC)

Revision as of 16:35, 7 February 2011

Practice Question on Computing the Fourier Series continuous-time signal

Obtain the Fourier series the CT signal

$ x(t) = \left\{ \begin{array}{ll} 1, & \text{ for } -5\leq t \leq 5,\\ 0, & \text{ for } 5< |t| \leq 10, \end{array} \right. \ $

x(t) periodic with period 20.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ k=0\, $

$ a_0=\frac{1}{20}\int_{-10}^{10}x(t)e^{-0}dt=\frac{1}{20}\int_{-5}^{5}1dt=\frac{1}{2} $

$ k\ne0 $

$ a_k=\frac{1}{20}\int_{-10}^{10}x(t)e^{-jkw_0t}dt=\frac{1}{20}\int_{-5}^{5}e^{-jk\frac{\pi}{10}t}dt=\frac{1}{20}\Bigg[\frac{e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}}{-jk\frac{\pi}{10}}\Bigg]=\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg) $

$ x(t)=\frac{1}{2}e^{-jk\frac{\pi}{10}t}+\sum_{k=-\infty}^-1\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t}+\sum_{k=1}^\infty\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t} $

--Cmcmican 21:35, 7 February 2011 (UTC)

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva