Line 1: | Line 1: | ||
I'm having a hard time proving 1a is stable or unstable. If (|x[n]|<m) then is it also true that (|x[n-1]|<m)? I'm assuming the product of two bounded signals also gives a bounded signal. | I'm having a hard time proving 1a is stable or unstable. If (|x[n]|<m) then is it also true that (|x[n-1]|<m)? I'm assuming the product of two bounded signals also gives a bounded signal. | ||
+ | |||
+ | |||
+ | I understand that convolution is commutative, but I was wondering if there are any good general rules as to picking the order. In other words, is there a good way of determining if computing the integral (wrt tau) of x(tau)h(t-tau) is easier than computing the same of h(tau)x(t-tau), or is this something that we will pick up on after some practice? |
Revision as of 10:47, 2 February 2011
I'm having a hard time proving 1a is stable or unstable. If (|x[n]|<m) then is it also true that (|x[n-1]|<m)? I'm assuming the product of two bounded signals also gives a bounded signal.
I understand that convolution is commutative, but I was wondering if there are any good general rules as to picking the order. In other words, is there a good way of determining if computing the integral (wrt tau) of x(tau)h(t-tau) is easier than computing the same of h(tau)x(t-tau), or is this something that we will pick up on after some practice?