Line 5: Line 5:
 
[[Category: asan]]
 
[[Category: asan]]
 
[[Category: Bonus]]
 
[[Category: Bonus]]
 +
=Proof of the Commutativity property of LTI systems ([[ECE301]])=
 
Given: <math>y[n]=x[n]*h[n]=\sum_{k=-\infty}^{\infty}(x[k]h[n-k])</math>
 
Given: <math>y[n]=x[n]*h[n]=\sum_{k=-\infty}^{\infty}(x[k]h[n-k])</math>
  
Line 11: Line 12:
 
#<math> x[n]*h[n]=\sum_{k'=\infty}^{-\infty}(x[n-k']h[k'])</math> from 1 and 2
 
#<math> x[n]*h[n]=\sum_{k'=\infty}^{-\infty}(x[n-k']h[k'])</math> from 1 and 2
 
#<math> x[n]*h[n]=h[n]*x[n]</math>
 
#<math> x[n]*h[n]=h[n]*x[n]</math>
 +
----
 +
[[ECE_301_%28SanSummer2008%29|Back to ECE301 Summer 2008]]

Latest revision as of 10:27, 30 January 2011

Proof of the Commutativity property of LTI systems (ECE301)

Given: $ y[n]=x[n]*h[n]=\sum_{k=-\infty}^{\infty}(x[k]h[n-k]) $

  1. $ x[n]*h[n]=\sum_{k=-\infty}^{\infty}(x[k]h[n-k]) $
  2. $ k'=n-k $
  3. $ x[n]*h[n]=\sum_{k'=\infty}^{-\infty}(x[n-k']h[k']) $ from 1 and 2
  4. $ x[n]*h[n]=h[n]*x[n] $

Back to ECE301 Summer 2008

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood